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Foreword from the General Chair

As president of the European Association for Machine Translation (EAMT) and General Chair of the
25th Annual Conference of the EAMT, it is with great pleasure that I write these opening words to the
Proceedings of EAMT 2024, a special year since we are celebrating our 25th anniversary!

According to tradition, my first note of deep appreciation and gratitude goes to Celia Rico, Luc Meertens,
Lucia Specia, and Maja Popovi¢, Executive Board Members, who have moved to new adventures in their
lives, after outstanding, and dedicated service to the EAMT community.

We have several milestones to celebrate this year, built upon the hard work of our Executive Committee
(EC) and our community: upgraded grants for low-income and war zones and for Translation Studies, a
record submission rate for research projects, continuous excelling submissions for the best thesis award,
and one of the highest number of papers ever submitted to our conference (80 papers accepted)! I could
not be prouder of our EC and the dynamics of our community.

The EAMT Executive Committee (EC) has been very busy. Luc Meertens (treasurer), Carolina Scarton
(secretary) and Sara Szoc (preparing to become our secretary and supporting everything we do) have
been tirelessly supporting all initiatives. André Martins and Celia Rico, our co-chairs for low-income
areas, war zones and Translation Studies grants, selected 11 grantees, 6 applicants from Translation Stu-
dies and 5 from war zones (3 hybrid light and 8 in-person). Maja Popovi¢ and Sara Szoc, our co-chairs
for the Research Projects, selected 4 projects (equally distributed by students and general research pro-
jects calls) with a diverse set of topics. To all our co-chairs, my gratitude! The selection work is never an
easy task and this year was particularly hard.

The same applied to the best thesis award — Barry Haddow, chair of the Best Thesis Award, had a very
difficult time selecting a candidate, since the submissions were of very high quality. Our congratulations
to Marco Gaido’s thesis “Direct Speech Translation Toward High-Quality, Inclusive, and Augmented Sy-
stems"(FBK, Italy), supervised by Marco Turchi and Matteo Negri. Our congratulations extended to the
two highly commended theses of Jannis Vamvas: “Model-based Evaluation of Multilinguality” (Univer-
sity of Zurich, Switzerland), supervised by Rico Sennrich and Lena A. Jéger; and Javier Iranzo-Sanchez:
“Streaming Neural Speech Translation” (UPV, Spain), supervised by Jorge Civera and Alfons Juan.

EAMT, as full sponsor of the MT Marathon, would also like to highlight the outstanding work that the
MT Marathon organisers conducted, enriching the vitality of our community with their projects and
keynotes. A special thank you to the organising committee Lisa Yankovskaya, Agnes Luhtaru, Lisa Ko-
rotkova, Mark FiSel, Ondrej Bojar, and Barry Haddow for all the efforts on yet another successful MT
Marathon event. Thank you, University of Tartu, for hosting the event.

Sheffield, United Kingdom! EAMT 2024 celebrates our 25th anniversary! Our conference will have
a three-day, four-track programme put together by our chairs: Rachel Bawden and Victor Sanchez-
Cartagena (research: technical track co-chairs); Ekaterina Lapshinova-Koltunski and Patrick Cadwell
(research: translators & users track co-chairs); Chatzitheodorou Konstantinos and Vera Cabarrdo (imple-
mentations & case studies track co-chairs); and Mikel Forcada and Helena Moniz (products & projects
track chairs). And backing up all the scientific components of our conference and filters of quality for
the final selection: our reviewers. Thank you for your work and the alignment between all the chairs!

Continuing the successful event from Tampere, this year EAMT 2024 will also have an extra day for

workshops and tutorials, organised by our co-chairs Diptesh Kanojia and Mary Nurminen. Once more,
the submissions for workshops and tutorials largely exceeded our expectations for our second edition!
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The programme will continue the tradition of including two keynote speakers, Alexandra Birch (Reader
in Natural Language Processing in the Institute for Language, Cognition and Computation, School of
Informatics, University of Edinburgh) and Valter Mavri¢ (Director-General of the Translation Service
— DG TRAD - at the European Parliament). Our outstanding keynote speakers will demonstrate their
extensive and global impactful work in translation studies and translation technologies.

EAMT 2024 would never be possible without the synergetic, sharp, enthusiastic, and hard working local
organising team! What a dream and fun team to work with! Our local co-chair, Carolina Scarton (Uni-
versity of Sheffield, UK), who always supports the EAMT community and is always eager to do the best
EAMT ever! Our local co-chair from ZOO Digital, Chris Oakley, also Charlotte Prescott (ZOO Digital,
UK), Chris Bayliss (ZOO Digital, UK), Joanna Wright (University of Sheffield, UK), and Xingyi Song
(University of Sheffield, UK). From the local organising support team, our thank you to Freddy Heppell
(University of Sheffield, UK) and Tom Pickard (University of Sheffield, UK). Our special gratitude to the
University of Sheffield and ZOO Digital for the joint efforts. You will surely make our 25th anniversary
memorable!

The Sheffield team is working towards a special 25th anniversary. Carolina Scarton has been doing
intensive work on organising and finding a home for the John Hutchins Machine Translation Archive.
Carolina is deeply committed to respect John’s wishes of making his library available to the community,
and the former president, Mikel Forcada, and current one are fully supporting Carolina’s initiatives. As
an anticipation of such effort, the Sheffield team is working on presenting a sample of John’s books for
EAMT 2024 participants! Thank you, Carolina Scarton, for all the hard work on this. Within this topic
still, a special thank you to Mike Hutchins, John’s son, who is fully committed to make it happen and
respect his father’s vision of giving back to the community.

EAMT has been supported by generous sponsors in its initiatives along the years. This year is no ex-
ception. Our gratitude to our Silver sponsors: RWS Language Weaver, Translated, and Unbabel. To our
Bronze sponsors: CrossLang, Pangeanic, STAR, and TransPerfect. Also to Apertium, our long standing
collaborator sponsor, Springer, our Supporter sponsor for the Best Paper award, and our Media sponsors,
MultiLingual. Your support is vital in our efforts to give back to our community through grants and other
initiatives.

A note still to all our EAMT members and our participants! Without you no effort would make sense!
Let us take this opportunity to create scientific collaboration and give constructive feedback. To fully
enjoy the conference, please check our Code of Conduct at https://eamt2024.sheffield.ac.
uk/code-of-conduct. I'm looking forward to seeing you all and celebrating our 25th anniversary
with you!

It is our organisation’s greatest wish to continue giving back to our community and to drive and be
driven by our community’s energy and enthusiasm. Reach out to us if you have new ideas or suggestions
you would like to implement. We will try hard to accomplish it with you. Learn more about us at
https://eamt.org/.

Helena Moniz

President of the EAMT
General Chair of EAMT 2024
University of Lisbon / INESC-ID, Portugal
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Message from the Organising Committee

Ey Up!

We are delighted to welcome you to EAMT 2024 at Sheffield and celebrate its 25th anniversary. Shef-
field, renowned for its rich industrial heritage and pivotal role in the steel industry, provides an ideal
venue for “forging” collaboration and exchanging ideas. The outdoor cityprovides an ideal and welco-
ming environment for a thriving international community with a large number of students. The UK’s
greenest cityhas the Peak District National Park at its doorstep, being a not to be missed place for the
most adventurous (looking for sports like bouldering and mountain biking) as well as for just relaxing
on a short walk enjoying the views and hospitality of the Peak District’s small villages. It is not rare that
students end up staying in Sheffield and calling this fabulous place home (which is the case of some of
us on the organising committee).

The University of Sheffield has also been key in developing Machine Translation research, being an ac-
tive member of EAMT and part of its history. Memorable former members of the Sheffield community
include: the late John Hutchins (creator of the MT Archive and author of the 1992 book An introduction
to machine translation) was a librarian in Sheffield from 1965 and 1971; the late Professor Yorick Wilks
(author of the 2008 book Machine Translation: Its Scope and Limits) was an emeritus professor and a
former Head of the Computer Science department; and Professor Lucia Specia (the pioneer in the area
of MT Quality Estimation and author of the 2018 book Quality Estimation for Machine Translation) was
professor at the Computer Science department and former PhD supervisor of two of the local organisers.

Z00 Digital is a global provider of cloud-based localisation and digital distribution services for the me-
dia and entertainment industry. ZOO Digital offers a range of services including subtitling, dubbing,
media processing, and distribution. The company uses proprietary technology platforms to streamline
and manage the localisation process, making it more efficient and cost-effective. ZOO is a long-term
partner of the University of Sheffield, being committed to support research in speech and text transla-
tion. They are also one of the most active sponsors of our UKRI AI Centre for Doctoral Training (CDT)
in Speech and Language Technologies and their Applications and had their first sponsored PhD student
working on the area of MT graduating in 2023.

We are especially excited about our conference venues, which showcase some of Sheffield’s most iconic
sites. Our welcome reception will take place in the stunning Sheffield Winter Garden, one of the largest
temperate glasshouses in the UK. This beautiful indoor garden is filled with exotic plants from around the
world. The conference dinner will be hosted at the Kelham Island Museum, a celebrated institution that
chronicles the city’s industrial history and innovation in steel production. Attendees will have the unique
opportunity to visit the impressive River Don Engine, a steam engine that highlights Sheffield’s enginee-
ring and industrial heritage. We are also thrilled to announce that ZOO Digital has generously funded a
special pre-conference social event at the National Videogame Museum. This interactive museum cele-
brates the history and culture of video games, offering a fun and engaging way for attendees to unwind
and connect with each other. Finally, participants that opt to attend the Kelham Island Food tour will
be taken on a culinary journey of the area, visiting a range of eating establishments and enjoying gene-
rous samples at each stop, and gaining insight into the interesting history of this famous Sheffield district.

We extend our deepest gratitude to our Silver Sponsors (Language Weaver, Translated, Unbabel), Bronze
Sponsors (AppTek, CrossLang, Pangeanic, STAR Group, TransPerfect), Collaborator (Apertium), Sup-
porter (Springer Nature), Media Sponsors (MultiLingual), track chairs (Helena Moniz, Rachel Bawden,
Victor M Sanchez-Cartagena, Patrick Cadwell, Ekaterina Lapshinova-Koltunski, Vera Cabarrao, Kon-
stantinos Chatzitheodorou, Mikel Forcada, Mary Nurminen, Diptesh Kanojia, Barry Haddow), keynote
speakers (Alexandra Birch, Valter Mavric€), the programme committee, and authors.
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Our special very thanks goes to the volunteers (Freddy Heppell, Tom Pickard, Edward Gow-Smith, and
Shenbin Qian), administrative and technical support (Natalie Hothersall, Kim Matthews-Hyde, and Ja-
mes Bishop), events management (Gavin Lambert), and our emergency organisation support committee
(Xi Wang and Mark Stevenson) whose hard work and dedication have made this conference possible. We
also thank the EAMT executive committee for all the support provided and trust in our work, in particular
Helena Moniz (also our general chair) and Sara Szoc. Finally, we also thank the Department of Compu-
ter Science, in particular Professor Heidi Christensen (Head of the Computer Science department) and
Professor Kalina Bontcheva (head of the Natural Language Processing research group), for their support
of our conference.

We invite you to explore and enjoy the city of Sheffield. Whether you are discovering its historical land-
marks, enjoying its green spaces, or immersing yourself in its rich cultural offerings, we hope you find
inspiration both within and beyond the conference sessions.

Carolina Scarton Charlotte Prescott Chris Bayliss
(University of Sheffield) (ZOO Digital) (ZOO Digital)
(EAMT Secretary)
Chris Oakley Joanna Wright Stuart Wrigley
(ZOO Digital) (University of Sheffield) (University of Sheffield)

Xingyi Song
(University of Sheffield)



Preface by the Programme Chairs

On behalf of the programme chairs, a warm welcome to the 25th annual conference of the European
Association for Machine Translation in Sheffield, UK. Following last year’s restructuring of the resear-
ch track into two tracks, this year’s conference programme is divided into four tracks, two dedicated to
research (one for technical papers for development of MT techniques and one focused on translators and
users of MT), an implementations and case studies track and a projects and products track.

The Technical Research track invited submissions on significant results in any aspect of MT and related
areas, including multilingual technologies. As in previous years, this track proved the most popular of the
four tracks, receiving a total of 46 submissions from 26 different countries. With one desk rejection and
four paper withdrawals, 20 papers were accepted from 18 different countries, resulting in an acceptance
rate of 43%, which is consistent with previous years. Six of the accepted papers are to be presented orally
and the remaining 14 will be presented as posters.

Following current practices in the field, papers focus on neural MT (NMT), with several works also
studying large language models (LLMs) for translation. Accepted papers represented a wide range of
topics relevant to current interests in the field: context-aware MT (Appicharla et al., 2024; Gete and
Etchegoyhen, 2024); the application of techniques for low-resource languages and scenarios (Chen et
al. 2024; Guttmann et al.; Simonsen and Einarsson, 2024; Song et al. 2024) including sign language
translation (McGill et al., 2024); attention to specific domains (Ploeger et al., 2024; Roussis et al. 2024)
and to the challenges faced when dealing with them, e.g. for the incorporating of terminologies (Hauhio
and Friberg. 2024). A number of works study LLMs (Chen at al, 2024.; Mujadia et al. 2024; Simon-
sen and Einarsson, 2024), a trend that is likely to continue in years to come. As a sign of the progress
being made in the quality of MT systems, the EAMT 2024 technical research track also features several
papers dealing with topics related to the alignment of MT outputs with the expectations of human users
(Moura Ramos et al., 2024), including on the topics of toxicity (Garcia Gilabert et al., 2024), formality
(Wisniewski et al., 2024) and gender-inclusiveness (Piergentilie et al., 2024).

We would like to give our thanks to all the authors who submitted to the track and to the 72 reviewers,
who provided feedback and insightful comments for the submissions received. We are particularly gra-
teful to the emergency reviewers who agreed to review papers at the last minute in order for decision
notifications to be sent out on time.

Translators and Users Track

The focus of the Translators and Users track is to cover a wide range of topics related to the interac-
tion between human translators and other users of machine translation. The second edition of this track
attracted 21 papers, with 18 accepted out of them which comprises 85.71% of acceptance. Five of the
accepted papers will be presented orally and 13 will be presented at a dedicated poster presentation ses-
sion. The accepted papers address the interaction between machine translation and its users from various
perspectives and cover various aspects of machine translation use, including both interlingual and intra-
lingual translation, looking into challenges and potentials of large language models, as well as correlating
human and machine translation. They provide novel examinations of long-standing areas of interest for
translators and users in this space including translation quality, MT performance, tools and methods to
assist translators, and users’ perceptions and attitudes towards MT.

Sui He experiments with prompts applying ChatGPT for automatic translation. The author compares

translation briefs and what s/he calls persona prompts (assignment of a role of an author or translator to
the system).
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Claudio Fantinuoli and Xiaoman Wang explore correlation between automatic quality evaluation metrics
with human judgements for simultaneous interpreting.

Serge Gladkoff et al. investigate the application of the state-of-the-art LLMs for uncertainty estimation
of MT output quality, which is required to determine the need for post-editing.

Paolo Canavese and Patrick Cadwell analyse translators’ perspectives on the use of machine translation
and its impact in a specific institutional setting, i.e. the Swiss Confederation.

Marta R. Costa-jussa et. al. presents a novel multimodal and multilingual pipeline to automatically iden-
tify and mitigate added toxicity at inference time, which does not require further model training.

Celia Soler Uguet et al. compare performance of various LLMs for automatic post-editing and MQM
error annotation across four languages in a medical domain.

Lise Volkart and Pierrette Bouillon compare human translation and post-edited machine translation from
a lexical and syntactic perspective in two language pairs: English-French ad German-French. Their aim
is to find out if NMT systems produce lexically and syntactically poorer translations.

Gabriela Gonzalez-Saez et al. describe their work on visualisation tools to foster collaborations between
translators and computational scientists.

Maria Kunilovskaya et al. explore if GPT-4 can reduce translationese (specific feature of translated texts)
in human-translated texts on bidirectional German-English data from the Europarl corpus.

Rachel Bawden et al. evaluate the effectiveness of a post-editing pipeline for the translation of scientific
abstract demonstrating that such pipelines can be effective for high-resource language pairs.

Vicent Briva-Iglesias and Sharon O’Brien present a user study on professional English-Spanish transla-
tors in the legal domain, which focuses on impact of negative or positive translators’ pre-task perceptions
of MT.

Miguel Rios et al. explore the impact of automatic speech synthesis in a post-editing machine translation
environment in terms of quality, productivity, and cognitive effort.

Silvana Deilen et al. evaluate performance of intralingual machine translation systems in the area of
health communication.

Michael Carl looks into a way of using machine learning to validate the empirical objectivity of a taxo-
nomy for behavioral translation data.

Joao Lucas Cavalheiro Camargo et al. conduct a survey aimed at identifying and exploring the attitudes
and recommendations of machine translation quality assessment educators.

Bettina Hiebl and Dagmar Gromann propose to use the Best-Worst scoring for a comparative translation
quality assessment of one human and three machine translations in the English-German language pair.

Adaeze Ngozi Ohuoba et al. investigate methods to detect critical and harmful MT errors caused by

non-compositional multi-word expressions and polysemy. For this, they design diagnostic tests that they
apply on collections of medical texts.
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Nora Aranberri explores evaluation of the Spanish-Basque translations. The author compares evaluations
done by volunteers and translation professionals.

We would like to thank the 28 colleagues that kindly gave their time and effort to review the papers
submitted to this track. Your reviews were perceptive, detailed, and, above all, constructive. We would
also like to express our special gratitude to those reviewers who stepped in at the last minute to provide
extra reviews at short notice. Your collegiality was a great support to us.

Implementations and case studies track

Entering the second year with the Implementations & Case Studies track, we are excited to share the
acceptance of 9 papers. These papers cover a wide range of topics, showing the latest advancements,
challenges, and creative ideas in MT. The goal for this track remains unchanged: to report experiences
with MT in organizations of all types (both industry and academia) and to share views and observations
based on day-to-day experiences working within the dynamic field of MT.

The journey begins with Oliver et al. who detail corpus creation and NMT model training for legal texts
in low-resource languages, shedding light on the intricacies of bridging linguistic gaps in specialized
domains.

Continuing on this path, Eschbach-Dymanus et al. delve into the realm of domain adaptation of MT for
business IT texts, offering valuable insights into the translation capabilities of LLMs.

Bechara et al. present the creation and evaluation of a multilingual corpus of UN General Assembly
debates, underscoring the importance of robust linguistic resources in advancing our understanding of
multilingual communication.

Additionally, Korotkova and Fishel present groundbreaking research on Estonian-centric MT, emphasi-
zing data availability and releasing a back-translation corpus of over 2 billion sentence pairs.

Moving forward, Silveira et al. examine the suitability of GPT-4 in generating subject-matter expertise
assessment questions, illuminating new avenues for leveraging artificial intelligence in language asses-
sment.

Continuing in this direction, Nunziatini et al.’s research explores the advantages and disadvantages of
using LL.Ms to make raw MT output gender-inclusive.

Berger et al. work in prompting LLMs with human error markings represents a significant step towards
self-correcting MT, offering promising avenues for enhancing translation quality in specialized domains.

Vasiljevs et al. present findings from a comprehensive market study on advancing digital language equa-
lity in Europe. They provide critical insights into the current landscape of multilingual website translation
and introduce innovative open-source solutions aimed at bridging linguistic divides.

Lastly, Vincent et al. present an insightful case study on contextual MT in professional subtitling. This
work sheds light on the practical implications of incorporating extra-textual context into the MT pipeline,

offering valuable lessons for industry practitioners.

Together, these papers paint a vivid picture of the ever-evolving landscape of MT Implementations &
Case Studies, showcasing the ingenuity, resilience, and collaborative spirit of the MT community.
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Products and Projects track

This year we received 31 submissions and 30 papers were accepted. The selection will provide a plethora
of products and projects being developed by our community with a rich set of topics, ranging from EAMT
sponsored projects, European projects, services and products from distinguished industry and research
players of our community. It will surely be a very lively session with the usual poster boasters (one of our
EAMT conferences’ favourite moments) and poster sessions. We would like to thank the 25 reviewers,
who were drafted quite late, for their quick response and their timeliness.

Rachel Bawden Victor M Sanchez-Cartagena Patrick Cadwell
(Inria, Paris, France) (University of Alacant, Spain) (DCU, Ireland)
Ekaterina Lapshinova-Koltunski Vera Cabarrao Konstantinos Chatzitheodorou
(University of Hildesheim, Germany) (Unbabel, Portugal) (Strategic Agenda, UK)
Helena Moniz Mikel Forcada Marv Nurminen
(University of Lisbon (FLUL) (Prompsit Language Engineering (Tampere [;]niversit Finland)
INESC-ID, Portugal) Elx, Spain) P Y
Diptesh Kanojia Barry Haddow
(University of Surrey, UK) (University of Edinburgh, UK)
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EAMT 2023 Best Thesis Award (Anthony C Clarke Award)

For the 2023 best theses award, we received a total of 9 submissions; all were MT-related thesis defended
in 2023. We recruited 20 reviewers to examine and score the theses, considering how challenging the
problem tackled in each thesis was, how relevant the results were for machine translation as a field, and
what the strength of its impact in terms of scientific publications was. Two EAMT Executive Committee
members also analysed all theses. It became very clear that 2023 was another very good year for PhD
theses in machine translation.

All theses had merit, all candidates had strong CVs and, therefore, it was very difficult to select a winner.

A panel of two EAMT Executive Committee members (Barry Haddow and Helena Moniz) was assem-
bled to process the reviews and select a winner that was later ratified by the EAMT executive committee.

We are pleased to announce that the winner of the 2023 edition of the EAMT Best Thesis Award is
Marco Gaido’s’ thesis ‘“Direct Speech Translation Toward High-Quality, Inclusive, and Augmen-
ted Systems” (FBK, Italy), supervised by Marco Turchi and Matteo Negri.

In addition, the committee judged that the following theses, were “highly commended”:
Jannis Vamvas: “Model-based Evaluation of Multilinguality” (University of Zurich, Switzerland), su-
pervised by Rico Sennrich and Lena A. Jager

Javier Iranzo-Sanchez: “Streaming Neural Speech Translation” (UPV, Spain), supervised by Jorge Ci-
vera and Alfons Juan

The awardee will receive a prize of €500, together with a suitably-inscribed certificate. In addition, Dr.
Gaido will present a summary of their thesis at the 25th Annual Conference of the European Association
for Machine Translation. In order to facilitate this, the EAMT will waive the winner’s registration costs,
and will make available a travel bursary of €200.

Barry Haddow, chair, EAMT BTA award 2023
University of Edinburgh, UK
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Keynote Talk
Harnessing the benefits of machine translation at the
European Parliament: from current practices to future
possibilities

Valter Mavric¢
European Parliament
24-06-2024 11:00:00

Abstract: Machine translation (MT) is an essential tool for one of the largest institutional translation
providers in the world: the European Parliament’s Directorate-General for Translation (DG TRAD).
DG TRAD is home to 24 language units that embody and put into practice one of the core democratic
principles of the European Union: multilingualism. In this complex environment, MT has become an
integral part of DG TRAD’s work, helping it to manage an ever-growing volume of translation requests
and allowing it to focus on the unique value that only humans can bring to the translation process.

The MT technology used in DG TRAD is a focal point of cooperation between the EU institutions and is
constantly evolving. To best harness the benefits, DG TRAD relies on a dedicated team that carries out
tests to explore the best ways of using MT for DG TRAD’s content.

This presentation will tell you, from a user’s perspective, about DG TRAD’s journey to identify the most
efficient ways of working with MT. Here are some of the questions we will cover:

* How well does MT handle the European Parliament’s content? Do all languages produce the same
results? How does MT quality vary based on the type of content?

* How does MT improve efficiency? What efforts are still necessary after integrating MT into DG
TRAD’s workflow?

* What about clear language? How well does MT perform in this area?

Finally, we will look at the new areas DG TRAD is exploring in this age of artificial intelligence (AI)
and where we see that further research could provide added value.

Bio: Valter Mavric is Director-General of the Translation Service (DG TRAD) at the European Parlia-
ment (since 2016), where he was previously acting Director-General (from 2014), Director (from 2010)
and Head of the Slovenian Translation Unit (from 2004). With an MA in applied linguistics and further
training in translation, interpretation, linguistics and management, he has a long experience as manager,
translator, interpreter and teacher of languages. He works in Slovenian, Italian, English, French, and
Croatian and is currently preparing a PhD in strategic communication.
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Keynote Talk
Translation and LLMs

Alexandra Birch
School of Informatics, University of Edinburgh
26-06-2024 09:15:00

Abstract: What is the future of translation research in the era of large language models? Brown et al.
in 2020 showed that prompting GPT3 with a few examples of translation could result in translations
which were higher quality than SOTA supervised models at the time (into English and only for French,
German). Until this point, research on machine translation had been central to the field of natural lan-
guage processing, often attracting the most submissions in annual NLP conferences and leading to many
breakthroughs in the field. Since then, there has been enormous interest in models which can perform a
wide variety of tasks and interest in translation as a separate sub-field has somewhat diminished. Howe-
ver, translation remain a compelling and widely used technology. So what is the promise of LLMs for
translation and how should we best use them? What opportunities do LLMs unlock and what challenges
remain? How can the field of translation still contribute to NLP? I will touch on some of my own resear-
ch but I focus on these broader questions.

Bio: Alexandra Birch is a Reader in Natural Language Processing in the Institute for Language, Cognition
and Computation (ILCC), School of Informatics, University of Edinburgh. She is a leader of the StatMT
group and a co-founder of Aveni.ai - an award winning startup in speech analytics and conversational Al.
Her main research focuses on machine translation and multilingual dialogue, but she has a broad interest
in leveraging NLP to create compelling applications that improve people’s lives.
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Tutorial
Linguistically Motivated Neural Machine Translation

Haiyue Song, Hour Kaina, Raj Dabre
National Institute of Information and Communications Technology (NICT), Japan
27-06-2024 09:00:00

Abstract: In this tutorial, we focus on a niche area of neural machine translation (NMT) that aims
to incorporate linguistics into different stages in the NMT pipeline, from pre-processing to model trai-
ning to evaluation. We first introduce the background of NMT and fundamental analysis tools, such as
word segmenters, part-of-speech taggers, and dependency parsers. We then cover topics including 1)
word/subword segmentation, and character decomposition during MT data pre-processing, 2) incorpo-
rating direct and indirect linguistic features into NMT models, and 3) fine-grained linguistic evaluation
for MT systems. We reveal the impact of orthography, syntax, and semantics information on translation
performance. This tutorial is mainly aimed at researchers interested in the intersection of linguistics and
low-resource machine translation. We hope this tutorial inspires and encourages them to develop lingui-
stically motivated high-quality MT systems and evaluation benchmarks.
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Panel
LLMs and Machine Translation for Low-Resource
Languages: Bridging Gaps or Widening Divides?

24-06-2024 15:00:00 - 17:00:00

LLMs such as ChatGPT, Claude and Gemini 1.5 have come to dominate the Al landscape, through their
ability to perform well across a wide range of tasks and languages. They have excellent abilities in
machine translation for high-resource languages, often performing on par with dedicated translation mo-
dels, and with exciting use-cases including stylization, post-editing, and human-in-the-loop approaches.
Nevertheless, these models’ capabilities are much more limited in languages with less digital represen-
tation: performance in lower-resource languages can be regarded as a byproduct rather than a focus and
the reliance on English language training data reinforces English language cultural hegemony, with par-
ticularly high representation of American English cultural knowledge in model weights. In downstream
evaluation, claims of multilinguality typically belie the dependence on English-centric data: the FLO-
RES dataset, for example, which contains MT evaluation data in over 200 languages, is largely translated
from English. This panel will explore the challenges and opportunities associated with LLMs for tran-
slating low-resource languages, investigating the dangers of exacerbating existing linguistic and cultural
biases, the potential of LLMs to democratise information access, and how to ensure that these models
benefit rather than marginalise underrepresented linguistic communities.

Panelists:

Adaeze Ngozi Ohuoba, University of Leeds, UK Adaeze Ngozi Ohuoba is a PhD researcher at the
School of Languages, Cultures and Societies, University of Leeds. Her PhD research focuses on using
large language models to detect and predict English medical source texts that could produce potentially
harmful outputs when machine translated into a low-resource language like Igbo. Prior to commencing
her PhD studies, she worked as a lecturer at the Department of Foreign Language and Translation Studies,
Abia State University, Nigeria. She is also a freelance translator/ editor specialising in legal, medical and
literary translations from French/Igbo into English and English/French into Igbo. Her research interests
include Machine Translation for Low-Resourced Languages, Computational Linguistics, French as a Fo-
reign Language and Language in Health

Alexandra Birch, University of Edinburgh, UK Alexandra Birch is a Reader in Natural Language
Processing in the Institute for Language, Cognition and Computation (ILCC), School of Informatics,
University of Edinburgh. She is a leader of the StatMT group and a co-founder of Aveni.ai - an award
winning startup in speech analytics and conversational Al. Her main research focuses on machine tran-
slation and multilingual dialogue, but she has a broad interest in leveraging NLP to create compelling
applications that improve people’s lives.

Chris Oakley, ZOO Digital, UK Chris Oakley is the Chief Technology Officer (CTO) of ZOO Digital,
a leading provider of cloud-based localization and digital distribution services for the global entertain-
ment industry. With a career spanning over two decades in the technology and digital media sectors,
Chris brings a wealth of experience and a visionary approach to his role at ZOO Digital. As CTO,
Chris Oakley is responsible for overseeing the development and implementation of cutting-edge Al and
ML technologies that power ZOO Digital’s innovative services. Under his leadership, the company has
continued to pioneer advancements in Al and ML cloud-based solutions, enabling efficient and scalable
workflows for the localization and distribution of movies, TV shows, and other digital content.
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Helena Moniz, President of EAMT & IAMT. University of Lisbon, Portugal. INESC-ID, Portugal
Helena Moniz is the President of the European Association for Machine Translation (2021-) and Presi-
dent of the International Association for Machine Translation (2023-). She is also the Vice-Coordinator
of the Human Language Technologies Lab at INESC-ID, Lisbon. Helena is an Assistant Professor at the
School of Arts and Humanities at the University of Lisbon, where she teaches Computational Linguistics,
Computer Assisted Translation, and Machine Translation Systems and Post-editing. She is now in a very
exciting project, coordinated by Unbabel, the Center for Responsible Al (https://centerforresponsible.ai),
within the Portuguese Recovery and Resilience Plan, as Chair of the Ethics Committee. Helena gra-
duated in Modern Languages and Literature at the School of Arts and Humanities, University of Lisbon
(FLUL), in 1998. She took a Teacher Training graduation course in 2000, a Master’s degree in Lingui-
stics in 2007, and a PhD in Linguistics at FLUL in cooperation with the Technical University of Lisbon
(IST) in 2013. She has been working at INESC-ID/CLUL since 2000, in several national and interna-
tional projects involving multidisciplinary teams of linguists and speech processing engineers. Within
these fruitful collaborations, she participated in more than 20 national and international projects. From
2015/09 to 2024/04, she was the PI of a bilateral project between INESC-ID and Unbabel, a translation
company combining Al + post-editing, working on scalable Linguistic Quality Assurance processes for
crowdsourcing. She was responsible for the implementation in 2015 of the MQM metric, the creation of
the Linguistic Quality Assurance processes developed at Unbabel for Linguistic Annotation and Editors’
Evaluation. She also worked on research projects, involving Linguistics, Translation, and Responsible
Al and products developed by the Labs Team, mostly cultural transcreation, high risk products, and
silently controlled language metrics for dialogues. In a sentence, she is passionate about Language Te-
chnologies in a human-centric perspective and always feels like a child eager to learn!

Mirko Lorenz, Deutsche Welle, Germany Mirko Lorenz is an Innovation Manager working for Deut-
sche Welle, Germany’s international broadcaster. He has been a member of the Research and Cooperation
Team (ReCo) since 2008. One main outcome of his work is plain X, a 4-in-1 software to simplify content
adaptation. In plain X, users can transcribe, translate, subtitle, and create (synthetic) voice-overs. Mirko
has a master’s in economics and history from the University of Cologne and a professional background
in journalism. He co-founded Datawrapper, a tool to create charts and maps which is used in many large
newsrooms worldwide.

Valter Mavric¢, DG TRAD, European Parliament Valter Mavric is Director-General of the Translation
Service (DG TRAD) at the European Parliament (since 2016), where he was previously acting Director-
General (from 2014), Director (from 2010) and Head of the Slovenian Translation Unit (from 2004).
With an MA in applied linguistics and further training in translation, interpretation, linguistics and ma-
nagement, he has a long experience as manager, translator, interpreter and teacher of languages. He
works in Slovenian, Italian, English, French, and Croatian and is currently preparing a PhD in strategic
communication.

Moderator: Edward Gow-Smith, University of Sheffield, UK
Moderator: Carolina Scarton, University of Sheffield, UK
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Direct Speech Translation
Toward High-Quality, Inclusive, and Augmented Systems

Marco Gaido
Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
University of Trento, Trento, Italy
Email: mgaido@fbk.eu, Phone: +39 3482670470
Supervisors: Marco Turchi, Matteo Negri
marco.turchi@zoom.us, negri@fbk.eu

When this PhD started, in November 2019,
the translation of speech into text in a differ-
ent language was mainly tackled with a cascade
of automatic speech recognition (ASR) and ma-
chine translation (MT) models. However, a new
paradigm was emerging, with the proposal of di-
rect (or end-to-end) models designed to tackle the
speech-to-text translation (ST) task in a single step.
At that time, the main question within the ST com-
munity was: will direct ST models be able to keep
their promise and reach (or even outperform) the
quality of cascade approaches? Therefore, the ini-
tial phase of the PhD has been dedicated to build-
ing high-quality direct models, specifically under
the practical scenario where lengthy audio files ne-
cessitate automated segmentation. The positive
outcomes attained in terms of overall translation
quality enabled the study of specific aspects of di-
rect systems that are pivotal for meeting the real
needs of end-users. Consequently, a significant
portion of the PhD has been dedicated to analyz-
ing and improving their behavior concerning two
critical aspects: inclusivity (in terms of gender
bias) and augmented translation (the integration
of useful concepts and contextual information to
help users’ understanding). Below, I summarize
the work I carried out on the above lines of re-
search, and the related findings and achievements.
Translation Quality. Through the continuous ex-
perimentation of new techniques compared with
the state of the art and evaluated in the challeng-
ing yearly international IWSLT evaluation cam-
paign for speech translation, I contributed to clos-
ing the gap between the two paradigms, as attested
by the first success of a direct system in the compe-

© 2024 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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tition in 2020 (where the FBK model ranked 2nd,
first among academic participants) and a through
manual analysis carried out to compare the solu-
tions (ACL 2021). Specifically, on one side I in-
troduced training procedures and architectural so-
lutions aimed at improving the translation quality
of direct ST systems and their efficiency, reducing
computational costs. On the other, I focused on
how to limit the quality drops observed when the
audio is not segmented according to a known ref-
erence but has to be automatically segmented into
chunks processable by ST models.

As part of the first group of activities, I stud-
ied the best methods to transfer knowledge from
an MT model into a direct ST system with knowl-
edge distillation, highlighting not only the bene-
fits but also its limitations, for which I provided an
easy yet effective solution (IWSLT 2020). I also
proposed a compression mechanism that leverages
the prediction of a CTC module and dynamically
reduces the length of the input sequence in the
encoder of ST systems, improving both transla-
tion quality and computational efficiency (EACL
2021). Building on the CTC-compression module,
I introduced Speechformer, the first architecture
for direct ST that, enabled by an attention imple-
mentation with reduced computational complexity,
avoids any fixed compression of the audio input,
respecting the variability of the amount of infor-
mation in speech signals and bringing significant
quality gains (EMINLP 2021). Lastly, I showed the
superfluity of the ASR pre-training when using an
auxiliary CTC loss and the effectiveness of a sim-
ple data filtering procedure based on the transcript-
to-translation character ratio IWSLT 2022).

Moving to the second goal of coping with sub-
optimal audio segmentation, I increased the ro-
bustness of direct ST models with regard to au-

Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1), pages 2-3
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tomatic segmentation of the audio by fine-tuning
them on resegmented training corpora and by pro-
viding the previous audio segment as contextual
information (Interspeech 2020). Moreover, I pro-
posed a new hybrid segmentation method that lim-
its the quality degradation with respect to optimal
segmentation based on the transcripts, which are
unknown at inference time (ICNLSP 2021).

Inclusivity. Reckoning that a high overall qual-
ity is not enough to consider a technology ready
for the users and driven by the ethical commitment
and deep belief in the importance of raising aware-
ness of the limitations — and even potential harms
— of automatically-generated text in contemporary
society, I devoted part of my PhD to studying the
gender bias of direct ST systems. The goal was to
ensure the fairness of automatic systems and equal
opportunities for different groups of users to bene-
fit from them. In this context, I disclosed how the
pursuit of higher general performance can exac-
erbate gender representational disparities and pro-
posed mitigation techniques that reduce the gender
bias of ST models. To this aim, I explored differ-
ent solutions to control the grammatical gender of
words referred to the speaker (assuming that the
gender of the speaker is known in advance), in-
vestigating for the first time the case in which the
speakers’ gender conflicts with their vocal char-
acteristics (COLING 2020 Oustanding Paper).
In this context, I proposed automatic metrics tai-
lored at disentangling the gender bias of a system
from its overall quality, which has been validated
through an extensive manual analysis, which also
showed that ST models are nearly perfect in han-
dling gender agreement and that the most biased
part of speech is nouns (ACL 2022). Then, I un-
veiled the exacerbation of gender bias caused by
a BPE segmentation of the target text in compar-
ison with a character-based segmentation, and the
proposal of a solution that goes beyond the trade-
off between translation quality — BPE — and gender
accuracy — char — (ACL-Findings 2021). Lastly,
I demonstrated the increase in gender bias caused
by distilling knowledge from MT and how to solve
the issue with a simple fine-tuning (CLiC-it 2020
Best Paper, LJCoL 2022).

Augmented Translation. At last, motivated by the
practical needs of interpreters and translators, my
PhD evaluated the potential of direct ST systems
in the “augmented translation” scenario, where the
translation is enriched with contextual information

that eases its fruition. In particular, within the
Smarter Interpreting! research project — aimed at
the creation of to a new generation of computer-
assisted interpreting (CAI) tools — the main focus
was the translation and recognition of named en-
tities (NEs), which constitute one of the most de-
manding challenges for interpreters. This strand
of research activities started with the creation of a
new benchmark (NEurRoparl-ST), used to assess
the similar weaknesses of cascade and direct ST
systems when it comes to NEs (EMNLP 2021).
Having ascertained that person names are the most
complex NE type for ST systems, I isolated the
factors that contribute to this difficulty of ST sys-
tems (low frequency in the training data, names as-
sociated with languages not included in the source
side of the training set) and proposed the adoption
of multilingual models that jointly predict the tran-
script and the translation (giving more weight to
the transcription) to mitigate such errors (IWSLT
2023 Best Paper). Moreover, in cases in which a
dictionary of entities likely to appear in a given do-
main is available (a frequent condition in the inter-
preting sector), I showed that the accuracy of NEs
(especially of person names) can be significantly
improved by means of additional modules that first
recognize which of them are present and then in-
ject the corresponding translations as suggestions
while generating the output (ICASSP 2023). The
project was concluded by the introduction of mod-
els that jointly perform ST and NER, outperform-
ing a pipeline of ST and NER systems while keep-
ing the computational cost as low as that of a single
direct ST model (Interspeech 2023).

Besides automatic evaluations on the proposed
benchmark, the effectiveness of our solutions has
been proved in two demos, carried out in April
and December 2022, in which our joint ST and
NER systems have been integrated into a new CAI
tool that displays the translated NEs and domain-
specific terminology in real time to the interpreter.
In the first demo, students and professionals of
the University of La Laguna performed a human-
centric evaluation to assess the usefulness of the
system for interpreters. The positive feedback of
this analysis led to presenting the tool at interna-
tional interpreting conferences,” where it has been
introduced as the first 4th generation CAI system.

'https://smarter—interpreting.eu/ — financed
by CDTI Neotec funds.
’https://ctn.hkbu.edu.hk/interpreting_
conf2022/



Streaming Neural Machine Translation

Javier Iranzo-Sanchez
AppTek GmbH, Valencia, Spain
jiranzo@apptek.com

Thesis Summary

Speech Translation (ST) is a subfield of Machine
Learning (ML) that aims to automatically gener-
ate the text translation of a given audio waveform.
Currently, the majority of the work in ST is con-
cerned only with the offline task, that is, the task
in which the entire input audio is available, and no
real-time constraints exist. In contrast, in the on-
line task the input audio is incrementally received
as time passes, and the system must produce a
translation of a partial input within a certain la-
tency threshold, in a real-time fashion. Online ST
is inherently a harder problem, because the partial
input compromises the quality of the translation,
and due to the need for real-time translation, the
computational efficiency of the system cannot be
ignored.

Traditionally, ST systems follow the cascade
approach, in which the output of an Automatic
Speech Recognition (ASR) system is fed into a
Machine Translation (MT) system. Direct models
are a more recent development, in which a single
model receives the audio signal and generates the
translation. The techniques presented on this the-
sis follow the cascade approach, but they can also
be applied to the direct approach. Both approaches
had achieved a similar level of performance at the
time the thesis was written.

This thesis focuses on Streaming ST !, a subtask
of online ST in which the input is an unbounded
audio stream. Streaming ST presents additional
difficulties when compared with the standard on-
line setup, and it is especially relevant because

© 2024 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

IStreaming ST is also known in the literature as long-form
simultaneous ST
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many potential ST applications such as live lec-
tures or simultaneous interpretation fall under the
umbrella of streaming ST. The main goal of this
thesis is to develop the tools and techniques that
are required in order to create a working streaming
ST solution. These are, specifically, a dataset for
training and evaluating the ST models, a segmenter
system that connects the output of the ASR system
with the MT system, a streaming-ready evaluation
metric and a streaming-specific MT model that can
take advantage of contextual information.

The first challenge is the data scarcity prob-
lem faced when training ST systems. In order
to alleviate this, a ST dataset is constructed start-
ing from the official recordings of the proceedings
of the European Parliament. The data is orga-
nized in triples, containing the audio jointly with
its transcription and translation. It is a multilin-
gual dataset with 10 different official European
languages available both on the source and target
side. Document-level information and metadata is
included so that this dataset can be used for stream-
ing ST.

The segmentation step is the next challenge to
be addressed. The output of the streaming ASR
system is a continuous stream of words, which
needs to be segmented into semantically self-
contained units to be translated by the MT sys-
tem. We introduce a novel neural segmenter ar-
chitecture, Direct Segmentation (DS), which con-
siders the segmentation process as a classification
problem. Using a sliding window approach, for ev-
ery position of the ASR stream, the segmenter de-
cides whether or not to produce a chunk by using
a fixed local history and a small look-ahead win-
dow. The proposed architecture is computation-
ally efficient while outperforming other segmenta-
tion approaches, and is able to work straight out
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of the box in the streaming scenario. Experiments
are also performed showing that adding audio fea-
tures to the segmenter improves performance. This
work is then extended in order to evaluate the real
latency for a simultaneous ST system that uses on-
line ASR and MT systems as well as the proposed
DS system. The results show how an acceptable
translation quality can be reached at the same la-
tency as a human interpreter (approximately 4 sec-
onds).

The next challenge of streaming ST lies in how
to actually evaluate the latency of the ST sys-
tem under streaming conditions. This thesis in-
troduces a novel evaluation procedure for stream-
ing MT. Standard online MT metrics only work
with short audio segments, evaluated in isolation,
and do not take into account the sequential nature
of the streaming scenario. Our proposed stream-
ing evaluation method fixes these issues, and as
a bonus, it can be applied to the standard met-
rics used for online MT with a small modification.
Our proposal keeps track of a global latency score
across the entire translation process, and uses a re-
alignment step that matches translated words with
the correct reference segment. A significant ad-
vantage of our proposal is that the evaluation pro-
cedure is not system/segmentation dependent and
can be used to compare different systems, as well
as maintaining the original interpretability of the
metrics. Comparative experiments show that, un-
like competing approaches, our proposal correctly
ranks systems based on their latency, as well as
keeping the previously mentioned properties.

Last but not least, we present a general method-
ology for building context-aware state-of-the-art
streaming MT systems. This approach uses the
insights developed in the previous publications in
order to build a strong streaming baseline MT
system, and improves it with a novel context-
aware training methodology which obtains signifi-
cant improvements. Further improvements are also
obtained with a proposed Partial Bidirectional En-
coder that has access to a larger portion of the in-
put prefix. Our approach is similar to the concate-
native approach used in context-aware MT, and
uses a sliding window which contains the previous
streaming history that has been produced during
the translation process. History-augmented train-
ing samples are constructed from document-level
corpora, and at inference time, the real streaming
history is used. Extensive experiments show how

this approach achieves state-of-the-art results.

The full text of the thesis can be accesed
at https://doi.org/10.4995/Thesis/
10251/199170.

Supervisor Contact Details

Jorge Civera: Associate Professor, Universi-

tat Politecnica de Valéncia, Valencia, Spain.
jorcisai@vrain.upv.es

Alfons Juan: Full Professor, Universi-
tat Politecnica de Valencia, Valencia, Spain.

ajuanci@vrain.upv.es

Acknowledgments

The author would like to publicly acknowledge
the support received from his supervisors Jorge
Civera and Alfons Juan before, during and af-
ter this PhD degree. Likewise, the author re-
ceived many insightful comments from the the-
sis committee and external evaluators, consist-
ing of Francisco Casacuberta Nolla, Jesus Andrés
Ferrer, Marco Turchi, Felipe Sdnchez Martinez
and Marta Ruiz Costa-Jussa. This thesis has
been developed with the financial support of the
FPU scholarship program of the Government of
Spain (FPU18/04135), EU’s Horizon 2020 project
X5gon (761758), as well as Government of Spain’s
Multisub (RTI2018-094879-B-100) and Erasmus+
EXPERT (no. 20-226-093604-SCH) research
projects. The author gratefully acknowledges the
computer resources at Artemisa, funded by the Eu-
ropean Union ERDF and Comunitat Valenciana as
well as the technical support provided by the Insti-
tuto de Fisica Corpuscular, IFIC (CSIC-UV).


https://doi.org/10.4995/Thesis/10251/199170
https://doi.org/10.4995/Thesis/10251/199170

Model-based Evaluation of Multilinguality
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The aim of this thesis was to extend the method-
ological toolbox for evaluating the ability of nat-
ural language processing systems to handle multi-
ple languages. Neural machine translation (NMT)
took the central role in this endeavor: NMT is in-
herently cross-lingual, and multilingual NMT sys-
tems, which translate from many source languages
into many target languages, embody the concept
of multilinguality in a very tangible way. In addi-
tion, NMT and specifically the perplexity of NMT
systems can themselves be used as a tool for eval-
uating multilinguality.

Limitations of targeted evaluation methods for
machine translation

In (Vamvas and Sennrich, 2021a), we identified
a limitation of an existing targeted evaluation
method, contrastive evaluation using minimal
pairs. We discussed this limitation from a the-
oretical perspective by drawing a comparison be-
tween the conditions of contrastive evaluation and
the concept of exposure bias.

We then performed experiments with English—
German machine translation and demonstrated that
testing implausible hypotheses using contrastive
evaluation could lead to incorrect conclusions
about the errors actually made by a system in prac-
tice. Finally, we proposed an effective mitiga-
tion approach, deriving minimal pairs from NMT-
generated translations instead of human-written
reference translations.

© 2024 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
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Contrastive conditioning: A novel approach to
targeted evaluation

In (Vamvas and Sennrich, 2021b), we proposed
contrastive conditioning, a novel targeted eval-
uation method for machine translation. Our idea
is to analyze machine translations by measuring
the perplexity of an “expert” NMT system that we
provide with privileged information via a modified
source sequence. Unlike some previous methods,
contrastive conditioning can be used for a targeted
evaluation of black-box systems such as com-
mercial translation APIs. Another advantage of
contrastive conditioning is that it requires few as-
sumptions about the specific target language used,
which allows for the scaling of automatic evalua-
tion to many languages.

Two applications of contrastive conditioning

e In (Vamvas and Sennrich, 2021b), we used
the method to quantify overgeneralization
bias when translating ambiguous source ex-
pressions, which is a major challenge for ma-
chine translation. We hypothesized that lexi-
cal overgeneralization is more pronounced in
NMT systems trained with knowledge distil-
lation. Through the use of contrastive condi-
tioning, we showed that distilled models are
indeed more biased than non-distilled mod-
els, even if their overall quality is equal.

¢ In (Vamvas and Sennrich, 2022a), we demon-
strated how contrastive conditioning can be
applied to the automatic recognition of erro-
neous omission and addition of content. We
performed a human evaluation study to vali-
date our simple approach and found that the
accuracy in detecting omission errors is com-
parable to that of a specialized quality estima-
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tion model that was trained on a large amount
of synthetic data.

Translation cross-likelihood for semantic
similarity

In the final publication included in the thesis (Vam-
vas and Sennrich, 2022b) we proposed a novel
and robust way of using NMT perplexity for
judging the similarity of sentence pairs, called
translation cross-likelihood. We evaluated our
approach on paraphrase identification and found
that cross-likelihood tends to have a higher ac-
curacy than previous approaches. We also found
that translation-based similarity measures strongly
outperform embedding-based measures in distin-
guishing between paraphrases and adversarial non-
paraphrases. Finally, we highlighted the potential
of evaluation based on NMT perplexity on the ex-
ample of multilingual data-to-text generation.

Dissemination and Impact

A focus of this thesis has been the open shar-
ing of research artifacts. All research code
has been released on GitHub', including the
NMTScore library? for computing translation per-
plexity. Whenever possible, open-source models
and open datasets were used. Every paper was ac-
companied by a lay summary on the candidate’s
research blog.?
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Abstract

Standard context-aware neural machine
translation (NMT) typically relies on par-
allel document-level data, exploiting both
source and target contexts. Concatenation-
based approaches in particular, still a
strong baseline for document-level NMT,
prepend source and/or target context sen-
tences to the sentences to be translated,
with model variants that exploit equal
amounts of source and target data on each
side achieving state-of-the-art results. In
this work, we investigate whether target
data should be further promoted within
standard concatenation-based approaches,
as most document-level phenomena rely
on information that is present on the tar-
get language side. We evaluate novel
concatenation-based variants where the
target context is prepended to the source
language, either in isolation or in com-
bination with the source context. Ex-
perimental results in English-Russian and
Basque-Spanish show that including tar-
get context in the source leads to large
improvements on target language phenom-
ena. On source-dependent phenomena, us-
ing only target language context in the
source achieves parity with state-of-the-
art concatenation approaches, or slightly
underperforms, whereas combining source
and target context on the source side leads
to significant gains across the board.

© 2024 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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1 Introduction

Significant progress has been achieved in Machine
Translation within the Neural Machine Transla-
tion (NMT) paradigm (Sutskever et al., 2014; Bah-
danau et al., 2015; Vaswani et al., 2017). For
the most part though, most NMT models trans-
late sentences in isolation, preventing the adequate
translation on document-level phenomena such as
cohesion, discourse coherence or intersentential
anaphora resolution (Bawden et al., 2018; Laubli
et al., 2018; Voita et al., 2019b; Lopes et al., 2020;
Post and Junczys-Dowmunt, 2023). Among the
various approaches to context-aware NMT, sim-
ple concatenation of context sentences, as ini-
tially proposed by Tiedemann and Scherrer (2017),
remains a solid baseline typically used in prac-
tice with varying amounts of source-target context
pairs (Agrawal et al., 2018; Junczys-Dowmunt,
2019; Majumder et al., 2022; Sun et al., 2022; Post
and Junczys-Dowmunt, 2023).

Context-aware models typically rely on paral-
lel document-level data, a scarce resource overall
despite recent efforts to provide this type of re-
source (Barrault et al., 2019; Voita et al., 2019b;
Gete et al.,, 2022). To the exception of ap-
proaches such as the monolingual repair frame-
work of Voita et al. (2019a), context data in the
source language is generally used as the core in-
formation to model context-awareness. However,
most discourse-level phenomena feature informa-
tion that is either present mainly in the target lan-
guage (e.g., lexical cohesion, deixis) or in both the
source and target languages (e.g., gender selection,
ellipsis). Considering this, in this work we aim to
explore the impact of promoting target language
data in standard context-aware NMT.

Along these lines, we explore a simple

Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1), pages 9-23
June 24-27, 2024 ©2024 European Association for Machine Translation



concatenation-based approach which consists in
simply prepending context sentences from the tar-
get language to the source sentence to be trans-
lated, in isolation or in combination with source
context. The underlying intuition is that contex-
tual phenomena would be mainly modelled at the
decoder level via target-side context information,
whereas, on the encoder side, context data will
be either ignored and copied, as foreign data, or
also associated with source information to further
model context. Using target language context data
on the source side also enables the use of a stan-
dard NMT architecture and concatenation-based
approach to context-aware NMT.

We show that replacing source context sentences
with the target context already leads to significant
gains for discourse-level phenomena that depend
on target-language information, while achieving
either parity or moderate degradation in contrastive
accuracy on other phenomena. Combining both
source and target context sentences on the source
side leads to consistent significant improvements
across the board. We establish our results on
two language pairs, English-Russian and Basque-
Spanish, for which contrastive test sets are publicly
available on a range of phenomena that depend on
the source and/or target language context.

In addition to accuracy results on specific phe-
nomena, we compare the overall translation qual-
ity on parallel test sets as well. We also measure
the impact of using either reference or machine-
translated output as context at inference time, with
only minor loss observed with the latter in our ex-
periments. Finally, we evaluate the use of back-
translated data, with similar comparative gains as
those obtained using parallel document-level data.
Overall, our experimental results indicate that pro-
moting target context data within a standard NMT
architecture can be a promising alternative for
context-aware machine translation.

2 Related Work

One of the first methods proposed for document-
level NMT is the concatenation of context sen-
tences to the sentence to be translated, in either
the source language only, or in both source and
target languages (Tiedemann and Scherrer, 2017;
Agrawal et al., 2018). This method does not re-
quire any architectural change and uses a fixed
contextual window of sentences. It provides a
robust baseline that often achieves performances
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comparable to that of more sophisticated methods,
in particular in high-resource scenarios (Lopes et
al., 2020; Sun et al., 2022; Post and Junczys-
Dowmunt, 2023). Variants of this approach in-
clude discounting the loss generated by the con-
text (Lupo et al., 2022), extending model capac-
ity (Majumder et al., 2022; Post and Junczys-
Dowmunt, 2023) or encoding the specific position
of the context sentences (Lupo et al., 2023; Gete
and Etchegoyhen, 2023).

Alternative approaches include refining context-
agnostic translations (Voita et al., 2019a; Mansi-
mov et al., 2021) and modelling context informa-
tion with specific NMT architectures (Jean et al.,
2017; Li et al., 2020; Bao et al., 2021). More
recently, the use of pretrained language models
has been explored for the task, using them to en-
code the context (Wu et al., 2022), to initialize
NMT models (Huang et al., 2023) or fusing the
language model with a sentence-level translation
model (Petrick et al., 2023). Directly using pre-
trained language models to perform translation can
achieve competitive results, although these mod-
els might still produce critical errors and some-
times perform worse than conventional NMT mod-
els (Wang et al., 2023; Karpinska and Iyyer, 2023;
Hendy et al., 2023).

Concatenation-based approaches vary regarding
their use of context, exploiting either the source
context (Zhang et al., 2018; Voita et al., 2018), the
target context (Voita et al., 2019a) or both (Bawden
et al., 2018; Agrawal et al., 2018; Xu et al., 2021;
Majumder et al., 2022). The benefits of using con-
text sentences in both the source and the target lan-
guages are also discussed in Miiller et al. (2018),
for a multi-encoder approach. Fernandes et al.
(2021) conclude that concatenation-based models
make more use of the target context than the source
context, but Jin et al. (2023) show that the effec-
tiveness of the target context versus the source con-
text is highly dependent on the language pair in-
volved. Close to the target-based approach we ex-
plore in this work, Scherrer et al. (2019) and Gete
et al. (2023) include variants where target data is
concatenated to the source sentence, notably show-
ing that the target context is equally as important
than source context, and particularly beneficial to
address target-level phenomena. However, their
experiments were limited to one target sentence,
i.e. without prepending context on the target side.
We show in this work that including the target con-



(a) Lexical cohesion: name translation

EN: Not for Julia. Julia has a taste for taunting her victims.
RU: He qyia Tkymuu|Julial. FOmmsa™®[Julia] ymeer npasuuTs cBOMX KepTB.

(b) Deixis: register coherence

EU: Ez dago martetarrik zuen artean. Guztiak ari zarete ereduak lotu eta...
ES: Ninguno de ustedes[form] es marciano. Todos vosotros estais*[inf] siguiendo un modelo y...
(None of you are Martians. You are all following a model and...)

(c) Gender selection

EU: Hori nire arreba da. Berak[?] zaindu zituen nire argazkiak.

(That’s my sister. He/She took care of my photos.)

ES: Esa es mi hermana. El* cuido mis fotos.
(That’s my sister. He* took care of my photos.)

(d) Verb phrase ellipsis

EN: Veronica, thank you, but you saw what happened. We all did[?].
RU: Beponuka, criacu6o, HO Thl BHJIeJIa, 9TO Ipou3oILio. Mbl Bce xoresm™.
(Veronica, thank you, but you saw what happened. We all wanted* it.)

Table 1: Examples of document-level inconsistencies extracted from (Voita et al., 2019b) and (Gete et al., 2022).

text in both source and target languages is critical
to achieve significant improvements overall.

Since standard NMT evaluation metrics such as
BLEU (Papineni et al., 2002) are not well equipped
to assess accuracy on discourse phenomena, sev-
eral challenge test sets have been developed specif-
ically to measure translations in context, via con-
trastive evaluations (Bawden et al., 2018; Miiller
et al., 2018; Voita et al., 2019b; Lopes et al., 2020;
Nagata and Morishita, 2020; Gete et al., 2022;
Currey et al., 2022). We include contrastive test
sets that cover target-language phenomena such as
deixis or lexical cohesion, as well as phenomena
where the relevant context information is available
in both source and target languages.

3 Exploiting Target Language Context

The main incentive for the promotion of target con-
text data is the nature of the contextual phenomena
of interest for machine translation, as these can be
grouped into four broad categories depending on
the location of the relevant contextual information.

In a first category would be discourse-level phe-
nomena that require context information on the tar-
get language side, typically related to discursive
cohesion in a broad sense (see examples a and b in
Table 1). For instance, to maintain lexical cohesion
beyond the sentence level, a quality translation
should feature lexical repetition when necessary,
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as it can mark emphasis or support question clar-
ification. Another case is that of names with sev-
eral possible translations, where translations must
remain consistent throughout. Degrees of polite-
ness and linguistic register in general also involve
translation alternatives that are equally correct in
isolation, but require consistency at the document
level. In the case of pronouns, when the source an-
tecedent has translation options in different gram-
matical genders, translation choices should be co-
herent throughout in the target language. In all of
these cases, the relevant information involves pre-
vious translations in the target language.

In a second major category are phenomena for
which the relevant context information is in both
the source and the target context (examples ¢ and d
in Table 1). This includes word sense disambigua-
tion scenarios, where different types of source or
target elements may be relevant to perform dis-
ambiguation. Gender selection would also fall
into this category, in those cases where translation
options for the relevant contextual antecedent are
unique or share the same gender. The resolution
of elliptical constructions in the source language,
with no equivalent in the target language, may also
require context information from the source or the
target language. Another instance for this type of
phenomena would be the translation of Japanese
zero pronouns into English (Nagata and Morishita,



(a) ES: Hablé con mi amiga[fem]. Dijo que si.
EN: I talked to my friend[?]. She/He* said yes.
(b) EN: You can’t leave me! Don’t go away!

ES: jNo puede dejarme! jNo se vaya/te vayas*!

Table 2: Example of ambiguity where source context is necessary for disambiguation, in isolation (a) or in combination with

the target context (b).

2020), where information on both sides can be rel-
evant to determine the grammatical features of the
target pronoun. Note that, even when contextual
information is present in both the source and tar-
get languages, using source information for dis-
ambiguation can result in a lack of consistency
in the target language, whenever incorrect trans-
lations are involved.!

A third class of context-dependent phenomena
exists, where source data are the only source of
disambiguating information. This involves cases
where the context includes the translation of a
word marked for a specific category (e.g., gender)
into a unmarked one, while the source sentence
to be translated involves insufficient source infor-
mation (e.g., a dropped pronoun) that needs to be
translated into a marked element (e.g., a pronoun
marked for gender). A typical example is provided
in Table 2 a. In such a case, there would be insuf-
ficient information in the target language, as the
proper translation of the dropped subject pronoun
into she could only be determined from the gender
of the source context antecedent amiga (friend).

Finally, a fourth broad category contains con-
structions where the source and target context need
to be processed in combination for a correct trans-
lation. In the example b in Table 2, the source
context subject you does not provide information
about register, and neither does the target context
in Spanish, since the verb puede can indicate either
third person in informal register or second person
in polite register. However, the source context in-
dicates second person. Therefore combining both
sources of context information, it can be derived
that the translation should be second person in po-
lite form.

Any target-only approach, such as monolin-
gual repair (Voita et al., 2019a) or the target-
only variant we also explore in this work, would
only generate the correct translation in the latter

"Bawden et al. (2018) provide a contrastive test for these
cases, where part of the source has been translated incorrectly
but the translation is still required to be consistent overall.
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two classes of cases by either chance or train-
ing bias. Although these cases exist, it is unclear
how widespread they actually are, compared to the
other two main classes of contextual phenomena
described above. In what follows, we set to com-
pare the relative importance of source and target
data across the main phenomena as represented in
the selected document-level test suites.

4 Promoting Target Language Data

To explore the promotion of target language data,
we simply prepend the target context sentences to
the source sentence to be translated, either discard-
ing or maintaining the source context sentences.
On the target side, we evaluate the use of empty
context as well as maintaining the target context
sentences. We add a special token to separate the
concatenated context sentences in all cases.

At inference time, in practice the previously
translated sentences would be prepended as con-
text. Since context translations can feature various
degrees of correctness, we assess the approach un-
der both ideal and average conditions. On parallel
test sets, we measure the use of both correct refer-
ence context sentences (Section 6.1) and machine-
translated ones (Section 8). On the contrastive
test sets, only reference translations are used, as
is standard practice, since target context coherence
requirements prevent the use of non-reference con-
text translations for fair evaluations (see the dis-
cussion in Section 8).

The prepended target-language data will need to
be processed by the source language encoder un-
der this approach, which might generate unwar-
ranted noise. We hypothesise however that the en-
coder will essentially treat foreign language sub-
words as tokens to be copied directly into the tar-
get language, a typically simple operation for stan-
dard NMT models. We use BPE models jointly
learned on merged source and target language data
to facilitate this part of the process. Overall, the
proposed approach provides the means to exploit
target language data on the decoder side, without



any change to model architecture, while introduc-
ing data that might be easily processed via copying
on the source side.

S Experimental Setup
5.1 Data

We describe in turn below the datasets used to
train and test our models. All selected datasets
were normalised, tokenised and truecased using
Moses (Koehn et al., 2007) and segmented with
BPE (Sennrich et al., 2016), training a joint model
over 32,000 operations. Tables 3 and 4 show cor-
pora statistics for parallel and contrastive datasets
respectively.

EU-ES EN-RU
TRAIN 1,753,726 6,000,000
DEV 3,051 10,000
TEST 6,078 10,000

Table 3: Parallel corpora statistics (number of sentences)

For Basque—Spanish, we selected the TANDO
corpus (Gete et al., 2022), which contains par-
allel data from subtitles, news and literary doc-
uments. It includes two contrastive datasets for
Basque to Spanish translation. The first one, GDR-
SRC+TGT, centres on gender selection, with the
disambiguating information present in both the
source and target languages. The second one,
COH-TGT, is meant to evaluate cases where, de-
spite the absence in the source language of the nec-
essary information to make a correct selection of
gender or register, the translation must be contex-
tually coherent using target-side information.

For English—Russian, we used the dataset de-
scribed in Voita et al. (2019b), based on Open Sub-

EU-ES Size src tgt Dist.
GDR-SRC+TGT 300 v v <5
COH-TGT 300 v <5
EN-RU Size  src tgt Dist.
Ellipsis infl. 500 v v <3
Ellipsis VP 500 v v <3
Deixis 2,500 v <3
Lex. cohesion 1,500 v <3

Table 4: Contrastive test sets: size (number of instances), re-
quired context information and distance to the disambiguating
information (number of sentences)
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titles excerpts (Lison et al., 2018). It includes 4
large-scale contrastive test sets for English to Rus-
sian translation. Two of these tests are related to el-
lipsis and contain the disambiguating information
in both the source and target-side context: Ellipsis
infl. assesses the selection of correct morpholog-
ical noun phrase forms in cases where the source
verb is elided, whereas Ellipsis VP evaluates the
ability to predict the verb in Russian from an En-
glish sentence in which the verb phrase is elided.
In the other two tests, the disambiguating infor-
mation is only present in the target-side context:
Deixis addresses politeness consistency in the tar-
get language, without nominal markers, whereas
Lexical Cohesion focuses on the consistent trans-
lation of named entities in Russian.

5.2 Models

All models in our experiments are trained with
Marian (Junczys-Dowmunt et al., 2018) and rely
on the Transformer-base architecture with the pa-
rameters described in Vaswani et al. (2017).

As a general baseline, we trained a sentence-
level model using all source-target sentence pairs
in the selected training datasets for each lan-
guage pair. We then trained different variants of
concatenation-based context-aware models, vary-
ing the type of context sentences prepended to the
source and/or the target sentence, and adding a
special token to separate the context.

We use the following convention to denote the
models: nton uses the same amount of source and
target data on each side, and represents the state-
of-the-art baseline; tgt-nton uses target language
data on both sides, discarding source context alto-
gether; ntol and tgt-ntol are variants of the pre-
vious models that use no context sentences in the
target language; finally, src+tgt-nton and tgt+src-
nton are variants where target context sentences
are combined with source context sentences, by
prepending them after or before the latter, respec-
tively. For convenience, we will refer to the tgt-
nton, src+tgt-nton and tgt+src-nton variants as X-
tgt-nton, as they share the use of target context on
both sides. In Appendix A, we provide a diagram
to illustrate data composition for each model.

Given the size of the context for each dataset,
we have n=6 for Basque—Spanish models and n=4
for English-Russian models. All context-aware
models were initialised with the weights of the
sentence-level baseline.



Note that we discarded 1lton models, as they
present two main challenges. Within a standard
concatenation approach, we would be tasking the
model to learn a transformation from a single
source sentence to both the context and the tar-
get sentence, although the target context cannot be
derived from the source sentence, obviously. Al-
ternatively, a 1ton model could be designed via
changes in the NMT architecture, with forced de-
coding over the specified target context at both
training and inference time. The required architec-
tural changes were beyond the scope of this work,
although this type of model might be worth explor-
ing in more details.

6 Results

6.1 Parallel Tests

We first compared models in terms of BLEU on the
parallel test sets, using SacreBLEU (Post, 2018).
Statistical significance was computed via paired
bootstrap resampling (Koehn, 2004), for p <
0.05.3 The results are shown in Table 5.

In Basque-Spanish, the nton, tgt-nton, and
src+tgt-nton models performed better than the al-
ternatives, with no statistically significant differ-
ences between the three, with the tgt+src-nton
achieving slightly lower results. All three were
notably significantly better than the baseline and
the models which used only a single reference in
the target language. In English—Russian, all X-
tgt-nton model variants, that included target con-
text data on the source side, outperformed all other
models, including the standard nton model.

EU-ES EN-RU

Sentence-level  31.20 31.09
ntol 29.91 31.48
tgt-ntol 29.43 31.03
nton 31.96 31.20
tgt-nton 31.82 3229
src+tgt-nton 3194 3232
tgt+src-nton 31.56 32.49

Table S: BLEU results on the parallel test sets.

Sentence-level metrics are typically insufficient
to assess translation quality at the document level
(Wong and Kit, 2012), and conclusions should not

“nrefs: lcase:mixedleff:noltok: 1 3alsmooth:explversion:2.3.1
3In all tables, best scores given the statistical test at hand are
shown in bold.
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be drawn from the above results regarding context-
aware ability of the different models. They do
however indicate several tendencies at the sentence
level. First, the proposed use of target context data
on both sides was not detrimental in terms of trans-
lation quality, as the X-tgt-nton models performed
on a par with, or better than, the other variants.
Secondly, the lower results obtained by the ntol
and tgt-ntol models seem to indicate that (i) re-
moving target context data on the decoder side can
be detrimental, as in EU-ES, and (ii) using source
or target language data on the encoder side can lead
to similar BLEU results, as was the case in both
language pairs.

Note that the results above were obtained with
reference translations, in an ideal scenario where
the context is correctly translated. In Section 8, we
present additional results using machine-translated
context, to measure the impact of eventual errors in
target context translation.

6.2 Challenge Tests

We evaluated the different models on the challenge
test sets both in terms of BLEU and in terms of ac-
curacy of the contrastive evaluation. Statistical sig-
nificance of accuracy results was computed using
McNemar’s test (Mcnemar, 1947), for p < 0.05.
The results are shown in Tables 6 and 7.
Considering both language pairs, the first no-
table results are the significant gains achieved by
the src+tgt-nton and tgt+src-nton models, which
outperformed all other variants overall, in terms
of both BLEU scores and contrastive accuracy.
The tgt-nton model, where source context was dis-
carded altogether, also outperformed the baselines
in terms of BLEU in all but one case, and ei-
ther matched the other two target-based variants
in half of the scenarios, or was outperformed by
these variants in the other three cases. In terms
of contrastive accuracy, it also outperformed the
baselines by a wide margin on target-oriented phe-
nomena while achieving parity or resulting in ac-
curacy loss on other phenomena. Overall, the
best performing and most consistent variant across
datasets and metrics was the src+tgt-nton variant.
On all target-related phenomena, the X-tgt-nton
models outperformed all alternatives, and in par-
ticular the standard nton variant by large margins.
In terms of accuracy, in EU-ES on the COH-TGT
test, the tgt-nton model already outperformed the
baseline by 27.67 points and the nton model by



GDR-SRC+TGT COH-TGT

BLEU ACC. BLEU ACC.
Sentence-level 36.28 53.67 35.04 54.00
ntol 36.82 66.33 33.23  53.00
tgt-ntol 36.79 66.33 37.31 74.00
nton 40.45 77.67 35.89 65.33
tgt-nton 39.05 72.67 39.61 81.67
src+tgt-nton 41.29  78.67 40.23 84.67
tgt+src-nton 42.35 78.67 39.86 82.67

Table 6: BLEU and accuracy results on the Basque—Spanish challenge tests.

Ellipsis infl. Ellipsis VP Deixis Lex. Cohesion

BLEU ACC. BLEU ACC. BLEU ACC. BLEU ACC.

Sentence-level 30.81 51.80 2220 27.80 28.10 50.04 31.52 45.87
ntol 32.69 54.60 30.24  65.40 28.20 50.04 2947 4587
tgt-ntol 32.28 53.60 23.59  29.00 28.30  50.56 30.37 45.87
nton 36.97 75.20 29.59  62.60 27.15 8248 27.89 4593
tgt-nton 40.69 70.00 30.75 60.00 34.17 8748 30.98 4947
src+tgt-nton 40.98 77.20 35.84 77.60 34.38 8748 31.75  53.07
tgt+src-nton 42.02 75.60 3446 74.88 34.07 88.28 31.33  51.00

Table 7: BLEU and accuracy results in English—Russian challenge tests.

16.34 points, with even higher accuracy gains for
the best-performing src+tgt-nton model (+19.34).
In EN-RU, on Deixis gains of up to 38.24 and 5.8
points were achieved against the baseline and nton
model, respectively; on the Lexical Cohesion test
set, the gains reached 7.2 and and 7.14 points, re-
spectively. On these target-oriented test-sets, all
X-tgt-nton model also achieved comparable gains
in terms of BLEU scores, with a maximum against
the nton model of +4.34 points in EU-ES, +7.23
in EN-RU on Deixis, and +3.86 in EN-RU on the
Lexical cohesion test.

Turning now to the test sets where relevant con-
text information is available in either both the
source and target languages, or perhaps only in the
source language in some cases, the results are more
balanced between the nton baseline and the X-tgt-
nton variants, although the src+tgt-nton achieved
the best results overall in terms of both BLEU
and accuracy. On Ellipsis VP, the latter notably
achieved gains of 15 accuracy points, with the
tgt+src-nton variant a close second at +12.28. On
Ellipsis infl. and GDR-SRC-TGT, the gains were
more limited, with a maximum of +1 and and +2
accuracy points for the src+tgt-nton model against
the nton baseline, respectively, although signifi-
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cant BLEU gains of up to +3.3 and +5.05 were
observed on these test sets, respectively.

Unsurprisingly, on these three datasets where
source information is a relevant factor, in combi-
nation or in isolation, the tgt-nton model under-
performed, though in accuracy only and to a lim-
ited extent on Ellipsis VP, for instance. This vari-
ant also significantly outperformed the nton base-
line in terms of BLEU on Ellipsis infl., with a 3.60
points gain. To further determine the impact of
source and target context and more precisely assess
the limits of this type of model, more fine-grained
challenge tests would be needed to distinguish be-
tween cases that can solely be resolved with source
context information and those where either side of
context provides sufficient information.

Regarding the other two contextual variants,
ntol and tgt-ntol, which used no context infor-
mation on the target side of the input, the results
in accuracy were similar overall, performing on a
par with the sentence-level baseline on Lexical Co-
hesion, Deixis and COH-TGT for ntol. This was
expected for the ntol models, as the relevant in-
formation is in the target language in these cases,
which these models have no access to.

Overall, promoting target data

in a



concatenation-based approach achieved large
improvements across the board over the sentence-
level and nton baselines.  Replacing source
context data altogether with the target context
already improved significantly on target-context
phenomena, while achieving relatively close
results in the other cases. Combining source and
target context provided the best balance however,
achieving the best results in all cases. In particular,
the src+tgt-nton proved optimal and we discarded
the slightly worse tgt+src-nton variant in the
remainder of this work.

7 Using Back-translated Data

When document-level parallel data are lacking,
monolingual data in the target language can be
exploited within concatenation-based approaches
via back-translation (Junczys-Dowmunt, 2019;
Sugiyama and Yoshinaga, 2019; Huo et al., 2020).
Some level of degradation is expected, depending
on the quality of the model used to back-translate
the target data, and we also expect the models to
be impacted differently: the target sentence and its
back-translation would be identical for all models,
as would be the original target context sentences,
but the nton and the src+tgt-nton models also re-
quire back-translated context, unlike the tgt-nton
model.

For comparison purposes we back-translated the
target side of the training data for both language
pairs, using a sentence-level model trained on the
parallel data, and trained the main model variants
strictly on the back-translated data.* The results
are shown in Tables 8, 9 and 10, contrasting the
use of parallel (PA) and back-translated (BT) data.

The overall degradation using BT data was more
salient in EU-ES than in EN-RU, which is likely
due to the differences in training data size and the
resulting quality of the respective models. In both
cases, the X-tgt-nton variants proved more robust
than the nton model. This is likely due to the latter
having as context only the back-translation of the
target context, while the former contain, alone or in
combination with the back-translation, the original
target context.

Overall, the tendencies observed using par-
allel data were replicated with back-translated
data, with the src+tgt-nton model being the top-

“Note that we did not mix back-translated data with the orig-
inal parallel data, to strictly contrast the approaches in their
ability to exploit monolingual back-translated data.
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EU-ES EN-RU

Sentence-level (PA) 31.20 31.09
nton (PA) 31.96 31.20
tgt-nton (PA) 31.82 32.29
src+tgt-nton (PA) 31.94 32.32
nton (BT) 25.46 29.21
tgt-nton (BT) 27.33 30.10
src+tgt-nton (BT) 31.27 29.39

Table 8: BLEU results on the parallel test sets using parallel
(PA) and back-translated (BT) data.

performing variant across the board, and the tgt-
nton a close second on target-context phenomena
but performing worse than the nton model in ac-
curacy on the GDR-SRC+TGT and Ellipsis infl.
with BT data. Perhaps more surprising are the re-
sults achieved by the src+tgt-nton model, trained
on BT data, on the Lexical cohesion test set, where
it outperformed the same variant trained on paral-
lel data by 13 points. Additional datasets might be
warranted to further assess the tendencies for these
models, but the results on the available datasets
in terms of accuracy seem to indicate that the use
of BT data is viable, and particularly exploitable
by the X-tgt-nton models overall. We conjecture
that this is mainly due to the fact that these ap-
proaches promote target language data which are
in essence correct, while discarding or reducing
the role of source context data which are likely to
feature back-translation errors.

8 Machine-translated Target Context

Following standard practice, so far we used the
reference target context instead of the machine-
translated output in our evaluations. This is meant
to remove potential noise in terms of context trans-
lation errors and evaluate the approaches on their
translation accuracy given a correct context. Us-
ing reference translations also allows for an eval-
uation of phenomena where more than one con-
text translation would be correct — e.g. box trans-
lated as boite (fem.) instead of carton (masc.) in
French — but the contrastive evaluation relies on
one of these translations being selected and con-
textual phenomena, such as coherence, are evalu-
ated accordingly. A correct but different context
translation would unfairly affect the evaluation.
Still, in practice, at inference time there are no
reference translations, of course. Whereas X-tol



GDR-SRC+TGT

COH-TGT

BLEU ACC. BLEU ACC.
Sentence-level 36.28 53.67 35.04 54.00
nton (PA) 40.45 77.67 35.89 65.33
tgt-nton (PA) 39.05 72.67 39.61 81.67
src+tgt-nton (PA)  41.25 78.67 40.23 84.67
nton (BT) 41.58 76.00 31.02 67.00
tgt-nton (BT) 40.22 74.00 34.62 81.33
src+tgt-nton (BT)  45.67 77.33 42.67 84.67

Table 9: Results on Basque—Spanish contrastive tests with parallel (PA) and back-translated (BT) data.

Ellipsis infl. Ellipsis VP Deixis Lex. cohesion

BLEU ACC. BLEU ACC. BLEU ACC. BLEU ACC.

Sentence-level 30.81 51.80 2220 27.80 28.10 50.04 31.52 4587
nton (PA) 36.97 75.20 29.59 62.60 27.15 8248 27.89 4593
tgt-nton (PA) 40.69 70.00 30.75 60.00 34.17 87.48 30.98 4947
src+tgt-nton (PA) 4098  77.20 3584 77.60 34.38 87.48 31.75 53.07
nton (BT) 35.63 78.60 28.84 69.40 25.66 83.92 28.29 46.20
tgt-nton (BT) 39.25 73.60 31.86 57.60 31.84 87.84 29.81 49.20
src+tgt-nton (BT) 41.96  81.20 35.23  76.00 31.63 87.36 31.68 66.07

Table 10: Results on English—Russian contrastive tests with parallel (PA) and back-translated (BT) data.

EU-ES EN-RU

Sentence-level 31.20 31.09
nton 31.96 31.20
tgt-nton (RF) 31.82 32.29
tgt-nton (MT) 31.08 31.52
src+tgt-nton (RF) 31.94 32.32
src+tgt-nton (MT)  30.93 31.31

Table 11: BLEU results on the parallel test sets using refer-
ence (RF) and machine-translated (MT) context.

model should not be impacted at all, the X-tgt-
nton models are susceptible to suffer from errors
in the translation of the context. To measure this
aspect, we computed BLEU scores using machine-
translated target sentences for X-tgt-nton models.
The results are shown in Table 11.

Using MT output resulted in a slight degradation
for EU-ES, with results on a par with the sentence-
level baseline and at most 1.01 points loss com-
pared to the use of reference translations. For EN-
RU, all models achieved comparable results except
those that relied on reference translations, with
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gains of approximately 1 point for the latter. As
previously noted, the BLEU metric is known to be
deficient for context-aware model evaluation, and
contrastive tests provide more precise benchmarks.
However, measuring MT context in terms of con-
trastive accuracy is not a valid option, as challenge
tests rely on specific context translation choices,
and the reference context is provided instead in
standard practice. Note that nton models would
also be impacted in terms of contrastive accuracy,
since MT output would affect decoding.’

Evaluating approaches based on promoting tar-
get data in a practical scenario with imperfect
machine-translated context thus faces important
limitations with current document-level evaluation
protocols. A proper assessment of the impact of
machine-translated context would also need to take
into account the quality of the translation model it-
self, with larger models expected to minimise con-
text translation errors in this type of approach. We
leave these aspects for future research.

For completeness, in Appendix B we provide results in terms
of BLEU and accuracy on the challenge tests using machine-
translated context.



GDR-SRC+TGT

COH-TGT

Dist % cases nton tgt-nton  src+tgt-nton % cases nton tgt-nton  src+tgt-nton
1 64.67% 77.32  70.10 76.80 62.34% 69.52  85.03 86.10
2 20.67% 91.23  85.48 85.48 20.67% 66.13  90.32 85.48
3 9.33% 7241 7143 71.43 9.67% 51.72 7241 75.86
4 2.00% 57.14 57.14 85.71 6.00% 50.00  83.33 83.33
5 333% 66.67 55.56 88.89 1.33% 25.00  50.00 75.00
Table 12: Accuracy results in Basque—Spanish according to relevant context distance.
Deixis Lex. Cohesion
Dist % cases nton tgt-nton  src+tgt-nton % cases nton tgt-nton  src+tgt-nton
1 33.33% 88.66  90.49 89.63 42.75% 46.27 5145 57.53
2 33.33% 85.82  90.07 91.02 31.50% 45.87 47.39 50.00
3 33.33% 73.02  81.89 81.77 25.75% 45.43  48.56 49.09

Table 13: Accuracy results in English—Russian according to relevant context distance.

9 Accuracy At Distance

The results so far were measured considering con-
text as a whole. To achieve a more fine-grained
view of the differences between approaches, we
computed their accuracy in terms of the distance
between the current sentence and the disambiguat-
ing context information, expressed in number of
sentences. The results are shown in Tables 12 and
13, indicating the distance and the percentages of
cases in the corresponding dataset.

The main observable tendency is that of the
decreasing accuracy over distance for the nton
model, in all cases but GDR-SRC+TGT at dis-
tance 2 (where all models perform better), in
contrast with the significantly more robust ac-
curacy of the src+tgt-nton model at larger dis-
tances, for Basque-Spanish in particular. The tgt-
nton model exhibits mixed tendencies, improving
or maintaining accuracy over distance 1 in some
cases, but also degrading at larger distances (GDR-
SRC+TGT or COH-TGT, at dist=5). Note though
that larger distances are under-represented in the
Basque-Spanish test sets, and may thus not be as
representative.

10 Conclusions

In this work, we investigated the promotion of tar-
get context data within a standard concatenation-
based approach to context-aware neural machine
translation. The main incentive revolves around
the fact that, for most contextual phenomena of in-
terest for document-level machine translation, the
relevant information is either in the target language

18

or distributed on the source and target sides.

We studied simple model variants where target
context sentences are concatenated to the source
sentence, either in isolation or in combination with
the source context. Our results in Basque-Spanish
and English-Russian, over five datasets show-
casing different types of contextual phenomena,
showed large improvements in terms of contrastive
accuracy and BLEU scores. Models where the
source context was discarded altogether achieved
parity or slightly underperformed on phenomena
involving both source and target contexts. The
variants based on augmenting the source context
with target data achieved the best results across the
board and were also shown to be more accurate in
handling context at larger distances.

We further evaluated the use of back-translated
data, with models merging target and source
matching or outperforming variants trained on par-
allel data. We also measured the impact of us-
ing machine-translated context, although only in a
limited way given current evaluation protocols for
context-aware models, with slight degradation ob-
served in terms of BLEU. The use of more robust
baseline models, trained on larger volumes of data,
could mitigate the observed effects.

The proposed approach promoting target data
requires no changes to the standard NMT archi-
tecture and provides significant gains over strong
baselines. Although it also implies larger contexts
when merging source and target context, it might
be worth further exploring this type of approach
and the respective roles of source and target con-
text data in neural machine translation.
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Figure 1: Schematic representation of a training instance for the different models. The yellow blocks represent the source
language and the green blocks the target language. The dashed lines indicate context sentences; the continuous lines indicate

the current sentence and its translation.

A Models Overview

To clarify the differences between model variants,
Figure 1 provides a schematic view of the com-
position of a training instance for each type of
concatenation-based model. We show the main
building blocks and their ordering for both source
and target sides.

B Machine-translated Target Context on
Challenge Tests

To complement the results in Section 8§, we eval-
uated the models on the challenge test sets using
the machine-translated context instead of the refer-
ence translation in the test. Although this would be
the process at inference time, as previously noted
the challenge test sets depend on pre-established
translation choices, in particular for coherence. A
machine-translated context sentence might be en-
tirely correct but differ from the specific translation
choice the test has been designed for. The refer-
ence target context is thus typically provided as is
on these test sets for standard approaches such as
the nton model and we followed this protocol for
our main results.

With these caveats in mind, we computed results
in terms of BLEU and accuracy using machine
translated-context on a subset of the challenge
tests, with the results shown in Table 14. For this
evaluation, we discarded the tests where the disam-
biguating information is present only in the target
context, as this would lead to erroneous results, for
the reasons mentioned above. Thus, the evalua-
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tion was restricted to the GDR-SRC+TGT test for
Basque-Spanish, and on the ellipsis-related tests
for English-Russian. Although the contrastive re-
sults on these challenge tests might still be im-
pacted by differing translation choices, the source
context might contain sufficient information to
compensate for these variations.

Using MT output impacted all the models that
promoted the target context, in terms of both
BLEU and accuracy scores, except in Basque-
Spanish on BLEU where the loss was not statisti-
cally significant. However, these variants still out-
performed the sentence-level baselines in a signif-
icant way across the board.

In English-Russian, the src+tgt-nton model us-
ing machine-translated context achieved better re-
sults than all other models on Ellipsis VP, except-
ing the same variant using reference translations.
It was notably better than the nton and the tgt-
nton models with reference target context. The
situation is reversed on Ellipsis infl., with signif-
icant losses for the src+tgt-nton (MT) model com-
pared to src+tgt-nton (RF), and the nton model
achieving better results with MT context. Note that
the nton model also incurred significant losses in
terms of accuracy when using MT context in this
case. This is not unexpected, as the decoding pro-
cess involves the target context in these models,
with cascading divergences between the machine-
translated target context and the expected context
in the contrastive test. Note that this type of model
is not impacted by the use of MT output in terms



EU-ES EN-RU

GDR-SRC+TGT Ellipsis infl. Ellipsis VP

BLEU ACC. BLEU ACC. BLEU ACC.
Sentence-level 36.28  53.67 30.81 51.80 2220 27.80
nton (RF) 4045  77.67 3697 75.20 29.59 62.60
nton (MT) 4045 74.33 36.97 6740 29.59  63.20
tgt-nton (RF) 39.05  72.67 40.69 70.00 30.75 60.00
tgt-nton (MT) 3745  69.33 34.44 6240 30.18 55.20
src+tgt-nton (RF)  41.25  78.67 40.98 77.20 35.84 77.60
src+tgt-nton MT)  39.63  73.33 36.40 62.20 33.36 7140

Table 14: Results on contrastive tests using reference (RF) and machine-translated (MT) context.

of BLEU, howeyver, as the translated context is dis-
carded after translation in non-contrastive evalua-
tions.

In Basque-Spanish, the slight loss in BLEU be-
tween src+tgt-nton (RF) and src+tgt-nton (MT)
was not statistically significant. In terms of ac-
curacy, the losses were notable between these two
models however, at over 5 points, but marginal be-
tween the src+tgt-nton (MT) and the nton (MT)
models (1 point).

As previously discussed, contrastive tests are
meant for a specific context, and evaluations with
machine-translated output are only tentative. Dif-
ferent evaluation protocols would be needed to
evaluate the use of MT context in a more princi-
pled and robust manner.
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Abstract

This study investigates the potential of
Generative Pre-trained Transformer mod-
els, specifically GPT-4, to generate ma-
chine translation resources for the low-
resource language, Faroese. Given the
scarcity of high-quality, human-translated
data for such languages, Large Language
Models’ capabilities to produce native-
sounding text offer a practical solution.
This approach is particularly valuable
for generating paired translation examples
where one is in natural, authentic Faroese
as opposed to traditional approaches that
went from English to Faroese, addressing a
common limitation in such approaches. By
creating such a synthetic parallel dataset
and evaluating it through the Multidimen-
sional Quality Metrics framework, this re-
search assesses the translation quality of-
fered by GPT-4. The findings reveal GPT-
4’s strengths in general translation tasks,
while also highlighting its limitations in
capturing cultural nuances.

1 Introduction

In the past decade, the field of Natural Language
Processing (NLP) has seen a dramatic shift with
the introduction of the attention mechanism and
Transformer models, profoundly influencing the
domain of Machine Translation (MT) (Bahdanau
et al., 2014; Vaswani et al., 2017). One of the
foremost challenges in MT is the scarcity of high-
quality, human-translated data for low-resource

© 2024 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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languages. However, Large Language Models
(LLMs) such as the Generative Pre-trained Trans-
former (GPT) models may present a solution to
this challenge. These models are trained on vast
amounts of data and have an impressive ability to
generate native-sounding text, which they do by
adapting based on the context presented in their
training material (in-context learning) (Brown et
al., 2020). Transformer models, such as GPT,
are trained on multilingual data and have zero-
shot translation capabilities which enables them
to translate low-resource languages as well as
high-resource languages. Therefore, this shift to-
wards in-context learning signifies a breakthrough
in NLP, where human-quality translation pairs can
be generated without the input of a human trans-
lator. This has the potential of lowering the cost
of making such data and improving the scalabil-
ity of such an operation, which is vital for making
smaller and more cost-effective models for MT.

This shift is particularly evident in the realm
of MT datasets, where the gap between high-
resource and low-resource languages remains a
critical challenge. In the past, common methods
to synthesize data for MT datasets were based on
backtranslation (Sennrich et al., 2016; Poncelas et
al., 2018; Poncelas et al., 2019). However, the
quality of GPT models indicate that it is a better
choice for synthesizing MT datasets (Hendy et al.,
2023; Lyu et al., 2023).

The release of GPT-4 in March 2023 marked a
significant milestone, with Jiao et al. (2023)’s pilot
study that demonstrated its enhanced translation
abilities in languages including English, German,
Romanian, and Chinese, where its MT perfor-
mance was comparable with state-of-the-art Neu-
ral Machine Translation (NMT) models. These re-
sults served as a motivation to explore the poten-
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tial of building MT datasets for low-resource lan-
guages with GPT models. Unlike traditional trans-
lation software, GPT-4 was not trained with the ex-
plicit purpose of MT, and in fact, it is not clear to
what extent it was trained in MT at all. Further
research, like Yang and Nicolai’s (2023), demon-
strated the potential of applying GPT-generated
synthetic data in the context of MT. Their mod-
els translated from German (a high-resource lan-
guage) and Galician (a low-resource language).
Their findings revealed that while models trained
solely on natural data outperformed those trained
solely on synthetic data, the best performing model
was the one trained on a combination of both
datasets. These findings encourage the valida-
tion of translation quality in GPT models for low-
resourced languages such as Faroese.

The population of the Faroe Islands is approx-
imately 54,500 people (Statistics Faroe Islands,
2024), with the large majority speaking Faroese as
their L1. At this time, Faroese MT resources are
lacking, and the existing resources are not suffi-
cient for training high performing MT models (Si-
monsen et al., 2022). Focusing on Faroese, this
paper explores GPT-4’s effectiveness in translat-
ing from Faroese to English. The potential of the
GPT models raises the pivotal question: can the
creation of MT resources for the low-resource lan-
guage, Faroese, be automated, specifically through
the capabilities of advanced models like GPT-4?
To investigate this, the following contribution is
made:

* A synthetic parallel dataset of 5,408 Faroese
to English sentence pairs translated by GPT-
412,

* A sample of 850 Faroese to English sentence
pairs human evaluated and annotated with er-
ror labels from the Multidimensional Qual-
ity Metrics (MQM) framework by a native
speaker>-4.

'nttps://huggingface.co/datasets/
AnnikaSimonsen/GPT-4_FO-EN_parallel_
news_sentences
https://huggingface.co/datasets/
AnnikaSimonsen/GPT-4_FO-EN_parallel_
blog_sentences
‘https://huggingface.co/datasets/
AnnikaSimonsen/GPT-4_FO-EN_parallel_
news_sentences_MQOM
*https://huggingface.co/datasets/
AnnikaSimonsen/GPT-4_FO-EN_parallel_
blog_sentences_MQOM
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* An in-depth analysis of the types of reoccur-
ring errors that GPT-4 makes when translat-
ing from Faroese to English.

These contributions provide a detailed human
examination of GPT-4’s proficiency in translating
Faroese to English, expanding on the current un-
derstanding of GPT-4’s translation capabilities of
low-resource languages.

2 Previous work

2.1 Faroese Parallel Datasets

There has been some preliminary work done in
Faroese MT, specifically within the domain of cre-
ating parallel training data. However, the state-of-
the-art neural network MT models of today need
vast amounts of training data, an obstacle that
Faroese is still facing. The largest available par-
allel training data for Faroese is Sprotin’s paral-
lel corpus® which was published on GitHub in
2020 and contains over 100k sentences human-
translated from English to Faroese. This initia-
tive was part of an effort to encourage Google to
include Faroese in the Google Translate applica-
tion (Hvidfeldt, 2020). In response, Microsoft re-
leased a model trained on this dataset in their MT
system called Microsoft Translator. An Icelandic
NLP company, Mideind, also released a Faroese
MT model trained on the same data around the
same time on their MT system called Vélpyding
(Simonarson et al., 2021). For both systems it
was apparent that the model performance was not
high, which was likely due to the small amount of
training data. Faroese was never added to Google
Translate and is also currently no longer supported
on Vélpyding. More recently, Meta launched the
No Language Left Behind (NLLB) project which
aims to bridge the gap in the performance between
high- and low-resource languages in MT (Team et
al., 2022). They published a series of open-sourced
MT models called NLLB® and a human-translated
parallel dataset called FLORES-2007 which covers
over 200 languages, including Faroese. The NLLB
model’s capability to translate Faroese appears
promising based on preliminary experiments made

Shttps://raw.githubusercontent.com/
Sprotin/translations/main/sentences_
en—-fo.strict.csv
®https://huggingface.co/facebook/
nllb-200-distilled-1.3B
"https://huggingface.co/datasets/
facebook/flores



by the authors of this paper, a notable achieve-
ment considering the majority of its training data
for Faroese is not genuinely parallel but is instead
incorrectly aligned Faroese to English data.

Building upon the foundation of leveraging lin-
guistic relations for enhancing machine transla-
tion in low-resource languages, recent studies have
begun exploring the potential of utilizing phylo-
genetic information from high-resource languages
within the same language family. For example,
Snabjarnarson et al. (2023) demonstrated that by
incorporating resources from closely related Scan-
dinavian languages, the performance of NLP tasks
in Faroese could be substantially improved. This
method marks a departure from the traditional
’one-size-fits-all’ approach taken by widely used
multilingual transformers like mBERT or XLM-R,
advocating instead for a tailored strategy that con-
siders the unique linguistic heritage of each lan-
guage family. Such insights reveal the advantages
of a more focused approach in data augmentation
and model training, particularly for languages like
Faroese that have fewer resources. Additionally,
in Scalvini and Debess’ (2024) upcoming publi-
cation, they highlight the effectiveness of GPT-
SW3, a Scandinavian-focused LLM, in leveraging
the linguistic similarities between Faroese and its
Nordic counterparts to enhance translation accu-
racy and facilitate data augmentation.

2.2 Generating synthetic parallel data using
GPT models

As mentioned in the introduction, there have been
recent studies that explored using generative LLMs
like ChatGPT or GPT-4 to create synthetic paral-
lel data for training MT models. Inspired by find-
ings that GPT-4 could match the translation abili-
ties of commercial NMT systems, Yang and Nico-
lai (2023) explored training translation models for
German and Galician using ChatGPT-generated
synthetic data. In their study, they compared mod-
els trained on natural data from TED Talks with
those trained on synthetic data, created by trans-
lating seed words and sentences into English via
ChatGPT. Although models trained on real data
performed better than those trained on synthetic
data, those trained on a mix of real and synthetic
data (augmented model) showed improved trans-
lation quality for both languages. Interestingly,
synthetic Galician data yielded better translation
quality than the German synthetic data. How-
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ever, the study showed that there was a lower lin-
guistic diversity in the synthetic data compared
to natural data, evidenced by a lower type-token
ratio (TTR), indicating a repetition of sentences
and limited vocabulary use. This highlights chal-
lenges in leveraging LLMs for low-resource syn-
thetic data creation. Nonetheless, supplementing
real data with synthetic data remains a promising
strategy for training MT models for low-resource
languages (Poncelas et al., 2018; Poncelas et al.,
2019).

function_descriptions = [
{

"name": "translation_analysis",

"description": "The function analysis text that
has been translated from Faroese to English. The
input translation should be of exceptionally high
quality.",

"parameters": {

"type": "object",
"properties": {
"sentence_analysis_list": {
"type": "array",
"items": {
"type": "object",
"properties": {
"original":
{"type": "string"},
"translation":
{"type": "string"},

}

}
}
"required": ["sentence_analysis_list"]

1

Listing 1: JSON schema for translation analysis.

3 Experimental setup

This section outlines the methodology used to ex-
amine GPT-4’s effectiveness in generating paral-
lel data for Faroese, a language with limited re-
sources. Firstly, the experiment involves generat-
ing synthetic parallel data using GPT-4. This out-
put was then evaluated using the Multidimensional
Quality Metrics (MQM) framework with a single
native speaker as an annotator.

3.1 Prompting Approach

To generate the synthetic parallel data, a structured
prompting approach with GPT-4 was employed,
setting the temperature parameter to O to guarantee
uniform and deterministic output. The experiment
extracted information from Faroese news and blog
texts through OpenAl’s API, organizing it accord-
ing to a specific JSON format (as detailed in List-
ing 1). This format instructed GPT-4 to translate
texts sentence by sentence.



3.2 Data Preparation
3.2.1 GPT-4 Parallel Sentences

The parallel sentences generated by GPT-4 were
derived from the Basic Language Resource Kit
for Faroese 1.0 text corpus (Simonsen et al.,
2022). During the first round, news texts from the
online newspapers Dimmalcetting and Portalurin
were processed, with GPT-4 translating each docu-
ment sentence by sentence, yielding 3,735 Faroese
to English news sentence pairs. Subsequently, blog
texts were translated using the same procedure, in-
cluding works from Egid Riim by Marna Jacob-
sen®, BAVS by Berglj6t av Skardi’, and BirkBlog
by Birgir Kruse'?, resulting in 1,673 sentence pairs
from blogs. The aim was to capture a diverse rep-
resentation of GPT-4’s translation skills by com-
bining news and blog texts, acknowledging their
distinct genres. In total, there were 5,408 gener-
ated sentence pairs.

3.3 Human Evaluation

A subset of the GPT-4 generated parallel data
was sampled for human evaluation using the
MQM framework'!. MQM incorporates more
than twenty traditional translation quality metrics
and provides a detailed catalogue of over 100 po-
tential issues for assessing translations and source
texts. It is designed as a flexible master list from
which specific issues can be chosen based on the
translation task at hand, allowing for customiza-
tion to meet diverse requirements. In the con-
text of this study’s MT evaluation, a tailored ver-
sion of the MQM framework, as adapted by Fre-
itag et al. (2021) was employed. An overview of
the MQM error categories utilized by Freitag et
al. (2021), along with their descriptions, is pre-
sented in Table 1.

The sample that was chosen for human evalu-
ation was created by choosing articles randomly
and then evaluating the chosen articles, sentence
by sentence. There was only one annotator, author
of this paper, who is a linguist and native speaker
of Faroese. In total, 425 news sentence pairs and

8 Jacobsen shares insights from her personal life, coupled with
reviews of music, books and movies. Available at: https:
//marnakij.wordpress.com/.

“BAVS is centered on personal experiences, culture, and
travel. Available at https://b-av-s.blogspot.
com/

A blog focusing on cultural events along with reviews
of movies, music, and more. Available at: https://
birkblog.blogspot.com/
"https://www.qt21.eu/
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425 blog sentences pairs were human evaluated.
The evaluation was carried out in a Google Sheet
spreadsheet (see Figure 1). To calculate the MQM
score, the official MQM spreadsheet was used.
This spreadsheet contains all relevant formulas to
calculate the MQM score, also known as the Over-
all Quality Score (OQS).

4 Results

The results for the MQM evaluation is summarized
in Table 2. Overall, the quality of translations is
high as indicated by the MQM score or Overall
Quality Score.

As seen in Table 2, the predominant severity
level assigned for MQM was minor. This classifi-
cation was used when translations were not tech-
nically accurate but still conveyed the intended
meaning. The major category was designated for
errors in translation that obscured or altered the
meaning, while critical was reserved for when
the translation got offensive or dangerously mis-
informed. Notably, major accuracy errors oc-
curred more frequently in blogs than in news arti-
cles, often arising in idiomatic expressions and set
phrases. In the case of news articles, there were
three instances classified as critical'?:

1) Example sentence containing critical error
from Portalurin article.

* FO: Somuleidis skulu dagfgringar gerast d
Vdgs hgll vio mdling og wc til rerdslutarna
skal gerast i ganginum millum VB hiisid og
Vigs Hopll.

L]

ENG: "Similarly, updates should be made to
the Végur hall with regards to painting and
a toilet for disabled that should be made in
the corridor between the VB house and Vigur
Hall."

GPT-4: "Similarly, updates should be made
to Vagur hall with painting and a toilet for the
pipe players should be made in the corridor
between the VB house and the Vagur Hall."

The original sentence contains a spelling mis-
take; rgrdslutarna is supposed to be spelled rgrsiu-
tarnad which translates to "disabled". GPT-4
translated this term to "the pipe players".

">The order in the sentence examples is as follows: FO (orig-
inal Faroese sentence from dataset), ENG (a translation pro-
vided by an author of this paper) and GPT-4 (GPT-4’s trans-
lation of the original Faroese sentence).



Error Category

Description

Accuracy
Addition
Omission
Mistranslation
Untranslated text

Translation includes information not present in the source.
Translation is missing content from the source.
Translation does not accurately represent the source.
Source text has been left untranslated.

Fluency
Punctuation
Spelling

Grammar

Register
Inconsistency
Character encoding

Incorrect punctuation (for locale or style).
Incorrect spelling or capitalization.

Problems with grammar, other than orthography.
Wrong grammatical register.

Internal inconsistency (not related to terminology).
Characters are garbled due to incorrect encoding.

Terminology
Inappropriate for context
Inconsistent use

Terminology is non-standard or does not fit context.
Terminology is used inconsistently.

Style
Awkward

Translation has stylistic problems.

Other

Any other issues.

Source error

An error in the source text.

Non-translation

Impossible to reliably characterize the 5 most severe errors.

Table 1: Overview of MQM label hierarchy.

Faroese
Danska rokktrioin, sum legdi rikid fyri sinar fgtur { 90’'unum,
eigur eitt heilt serligt plass i hjartanum & mongum fgroyingi.

English translation

Errors Severity

The Danish rock trio, which conquered the country in the 90s,
holds a special place in the hearts of many Faroese.

style(fgroyingi-Faroese/Faroe Islanders) minor

Trioin gav Ut platuna Dizzy Mizz Lizzy i 1994, og hon streyk upp The trio released the album Dizzy Mizz Lizzy in 1994, and it

a tonleikatindarnar alt fyri eitt.

Utgévan var serstgk, ti hon var & tremur vid hittum.

The release was special because it was on par with others.

shot up the music charts immediately.

accuracy(d tremur vid hittum-on par with others/full of hits) major

Figure 1: Figure showing the human evaluation method for the GPT-4 generated parallel sentences in Google Sheets.

2) Example sentence containing critical error
from Dimmalcetting article.

e FO: Ors¢kin er, at svenski
isflokkurin, i0 var
Sosialdemokratunum, hevur vent samgonguni
bakid, eftir at tad gjgrdist greitt, at borgarliga
andstgdan fekk ein meiriluta vio at atkvgda
sina figgjarlog igjggnum.

* ENG: "The reason is that the Swedish En-
vironmental Party, which was in government
with the Social Democrats, has turned its
back on the coalition, after it became clear
that the civil opposition got a majority by
voting their budget through."

Umhvgrv-
stjorn saman Vvio

¢ GPT-4: "The reason is that the Swedish En-
vironmental Party, which was in government
with the Social Democrats, has turned its
back on the coalition, after it became clear
that the bourgeois opposition got a majority
by voting their budget through."

The word for "civil opposition" has been trans-
lated into "bourgeois opposition", which could
have negative connotations. The third example is
in the same article where "civil budget" was trans-
lated into "bourgeois budget".

In the blog texts, a single critical error was iden-
tified in the sample, involving the mistranslation of
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the term at reesa — the traditional Faroese method
of fermenting meat through dry-aging. It was in-
correctly translated as "raw". This misinterpre-
tation could be seen as dangerously misleading
and potentially harmful to someone’s health, espe-
cially if the food had not been pre-cooked as could
be inferred from the context given correct world-
knowledge:

3) Example sentence containing critical error
from BirkBlog.

* FO: Eg vildi smakka reestu pylsuna.

* ENG: "I wanted to taste the Faroese dry-
aged sausage."

e GPT-4: "I wanted to taste the raw hot dog."

The Overall Quality Score (0OQS), as detailed
in Table 2, serves as a metric for assessing trans-
lation quality. It is derived through a systematic
procedure: annotators input error annotations into
a matrix (see Figure 2), assigning them numerical
values based on error type and severity, to obtain
the Absolute Penalty Total (ABT). The OQS cal-
culation incorporates several factors, including the
Per-word Penalty Total, calculated by dividing the
ABT by the total word count (EWC); the Overall
Normed Penalty Total, which adjusts the per-word
penalty in relation to the total number of reference



Categor News Sentences (425) Blog Sentences (425)
gory Minor Major Critical Minor Major Critical
Accuracy 43 26 1 31 54 1
Fluency 9 0 0 8 5 0
Terminology 76 14 2 13 8 0
Style 35 2 0 11 3 0
MQM Score 94.41 88.38

Table 2: MQM evaluation results for 425 news sentences and 425 blog sentences. The MQM score is also known as the
Overall Quality Score (OQS). The weights are minor (-1), major (-5) and critical (-25). A higher score (with a maximum of

100) corresponds to better performance.
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Locale convention
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6 1.0
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Evaluation Word Count:
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Reference Word Count:

Overall Normed Penalty Total:

Scaling Parameter (SP):

Overall Quality Score:

Max. Score Value:

Threshold Value:

Pass/Fail Rating:

Figure 2: Figure showing the Overall Quality Score card from https://themgm.org/.

words; and the Overall Quality Fraction, achieved
by dividing the ABT by the EWC. The final Over-
all Quality Score is computed by subtracting the
result of multiplying the per-word penalty score
by the highest possible score from 1, thereby con-
verting the score into a more recognizable percent-
age format. This approach integrates a meticulous
evaluation of translation inaccuracies with a com-
prehensive scoring framework to measure and ex-
press the quality of translations quantitatively.

In Table 2, the Overall Quality Score demon-
strates high performance in translation quality for
both text genres, with news articles achieving a
score of 94.41/100 and blogs receiving 88.38/100.
According to the MQM framework, a score within
the range of 94 < x < 98 signifies a high level of
quality, whereas scores in the range of 80 < z <
94 are indicative of a good quality level, as out-
lined in Talhadas (2023). Following this, a quali-
tative analysis is provided to examine the specific
types of translation errors GPT-4 made while trans-
lating from Faroese to English.

4.1 Most Common FO-EN Translation
Errors by GPT-4

There is a general pattern in the types of errors that
GPT-4 makes when translating from Faroese to
English. A prominent error involves the translation
of the Faroese term for the Danish currency used
in the Faroe Islands, kronur. GPT-4 often renders
these as "crowns" or "kroner", whereas the con-
ventional translation should be "DKK" or "Danish
crowns." Additionally, we observed four times that
foroyingur was translated to "the Faroese" in the
sample, but a more precise translation would be "a
Faroe Islander" or "a Faroese person.” A check on
the rest of the translated data revealed that this was
a common mistranslation.

Another consistent error is the translation of ko-
rona to "corona." While not incorrect, "COVID-
19" is the term more frequently used in English
news articles, making it a more suitable translation
in those contexts. Given that "COVID" was not
adopted into Faroese during the pandemic, Faroese
news texts use korona instead.

Subsequent sections will detail the other preva-
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lent errors, categorized by their types, to provide
a comprehensive overview of the translation chal-
lenges encountered. See Table 3 in the Appendix
for a quantitative analysis of the errors analyzed in
this section.

4.1.1 Named Entities (NEs)

GPT-4 did not consistently translate all NEs in-
correctly, but did manage to correctly translate cer-
tain NEs, such as names of institutions, e.g. Rddid
Jyri Ferdslutrygd ("Council for Traffic Safety").
It also frequently accurately converted people’s
names from the dative to the nominative case in
English, such as translating Mariu to "Maria".
Nevertheless, there are many examples of trans-
lation errors with NEs. For instance, the short
form name Setrid for Frodskaparsetrid was incor-
rectly translated literally as "Center" rather than
"The University of the Faroe Islands" or simply
"Setrid". Additionally, Okkara Voxbotn was in-
accurately translated to "Our Voxbotn" instead of
preserving its original name, which is associated
with a brewery named Okkara that sponsors a mu-
sic festival that takes place in the harbour named
Voksbotn. These examples illustrate the nuanced
difficulties GPT-4 faces with NEs in the context of
Faroese to English translation.

4.1.2 Correct Translation, Wrong
Terminology

While GPT-4 frequently chooses accurate trans-
lations for words, it often selects the wrong terms.
For instance, in some contexts skeid is translated
as "course" when it is supposed to be "workshop,"
and eldragki is translated as "elderly area" instead
of "elderly affairs". The term gki can be translated
as "area" only when it is referring to a physical
place. In this context, the term was used in a sen-
tence from an article about a financial budget of a
town, where the taxes had been increased to cover
elderly affairs. Therefore, while these translations
are technically correct, they are not entirely appro-
priate in these specific contexts.

4.1.3 Idioms and Fixed Phrases

GPT-4 often encounters difficulties with id-
iomatic expressions and fixed phrases, particularly
in the Faroese blog texts. These phrases frequently
undergo literal translation, which misses their nu-
anced meanings. For instance, the phrase at fda
scer okkurt gott is directly translated as "getting
oneself something good" rather than capturing the
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intended meaning of "getting something to eat."
Similarly, a well-known Faroese phrase, er ikki
sum at siga tad, intended to convey that something
is not easy, is translated by GPT-4 in a literal man-
ner as "is not like saying it."

4.2 Icelandicisms

GPT-4 often confounds Faroese with Icelandic,
likely due to the fact that GPT-4 has been trained
on significantly more Icelandic data than Faroese.
This leads to what we term "Icelandicism", where
translations mistakenly apply Icelandic meanings.
Examples include translating menning as "culture"
instead of "progress", s®tti as "sweet" instead of
"sixth" and bleytur as "wet" rather than "soft".
Here, it is presumed that the Faroese word seatti
is confused with the Icelandic word s&tur and the
Faroese word bleytur is conflated with the Ice-
landic word blautur.

4.2.1 Cultural Context

GPT-4 often misses the cultural nuances in its
translations, leading to misunderstandings of cer-
tain terms. For example, it interprets rikid as
"country" instead of "kingdom". In Faroese con-
texts, rikio typically refers to the Danish King-
dom rather than the Faroe Islands. This mis-
interpretation might also reflect an Icelandicism.
Other Faroese terms that are commonly mistrans-
lated include fiskaplassid, which refers to a stone-
paved area for drying fish but gets translated as
"fish place," and hoyggjhiis, which is translated as
"living room" instead of "hay barn". Occasion-
ally, these culturally specific terms are translated
into nonsensical words. For instance, the Faroese
term for "paternal granduncle", abbabeiggi, was
erroneously translated as "abbess." The term ab-
babeiggi is culturally significant, as, although Ice-
landic also has a term for the brother of your grand-
father, afabrédur, it is not as commonly used as
in Faroese. Notably, Danish lacks a term for this
specific type of granduncle. Another example of
a mistranslation is the Faroese word for a national
dish, pilot whale steak (grindabiiffur), which was
translated to the nonsense word "grindabuffi".

This examination underscores that although
GPT-4’s FO-EN translations are of commendable
quality, they exhibit specific and frequently recur-
ring mistakes, notably in handling cultural sub-
tleties and idiomatic expressions. Further qualita-



tive analyses of errors are deferred to the appendix.

5 Discussion

According to the human evaluation of the GPT-4
translation data, GPT-4 has demonstrated its pro-
ficiency in translating from Faroese to English,
especially in the context of news articles. How-
ever, the translations are not perfect and we ad-
dress the limitations later in this section. This find-
ing of translation quality is consistent with recent
research indicating GPT-4’s effectiveness in trans-
lating from low-resource languages to English, as
highlighted in studies by Bang et al. (2023), Jiao
et al. (2023), and Yang and Nicolai (2023). The
model’s particular strength in news translation is
likely due to its extensive training on a wide ar-
ray of news texts, which is abundantly available
online for collection. However, when it comes
to blog texts, which are rich in idiomatic expres-
sions and fixed phrases, GPT-4’s performance dips
slightly (from 94.41 to 88.38). This drop in per-
formance suggests that while GPT-4 can gener-
ate high-quality translations, its capability dimin-
ishes with content that heavily features language-
specific idioms and cultural nuances. Yet, the
synthetic parallel sentences generated by GPT-4
present a "Silver Standard" resource for training
MT models for Faroese, complementing the "Gold
Standard" human-translated data. Although not a
substitute for human translation, the combination
of synthetic and human-generated data could po-
tentially enhance the training materials available
for Faroese MT models (for German and Gali-
cian, see Yang and Nicolai (2023); for English,
German and Turkish, see Sennrich et al. (2016).
However, to fully assess the impact of GPT-4 gen-
erated parallel data on MT model performance, a
larger dataset would be ideal. For this study, the
collection was limited to 5,408 sentence pairs due
to cost considerations and the licensing restrictions
imposed by OpenAl on their model’s output'3.
During the study, a preliminary experiment was
conducted to see how well GPT-4’s translation
performed from English into Faroese, which re-
vealed significant limitations. The model often
failed to construct grammatically correct Faroese
sentences, frequently producing outputs that ap-
peared to be an amalgamation of Icelandic and
Faroese. This finding corroborates previous re-

13 At the time of usage, gpt-4-0613 cost $0.03 for every input
token and $0.06 for every output token.
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search indicating that GPT-4’s capabilities in trans-
lating from English to low-resource languages re-
main constrained. Studies by Hendy et al. (2023),
Lyu et al. (2023), Jiao et al. (2023), and Yang and
Nicolai (2023) have similarly documented these
challenges, reinforcing the observation that GPT-
4’s performance in such translation tasks is not yet
satisfactory.

6 Limitations

6.1 GPT-4’s Splitting of Sentences

GPT-4 did not consistently split the Faroese text
into sentences although it was explicitly instructed
to do so using our function-callin approach to ex-
tract output in a structured manner. An analysis of
a random selection of 500 rows from the parallel
dataset generated by GPT-4 revealed 29 cases of
improper sentence division. This means that GPT-
4 incorrectly split the Faroese sentences 5.8% of
the time. This could also be related to the reason
why GPT-4 struggled with translating NEs. NEs
are notoriously difficult for MT models to handle
accurately, and Named Entity Recognizers (NERs)
are often employed alongside these models to en-
hance performance (Babych and Hartley, 2003).
In the early stages of developing the GPT-4 par-
allel data for this experiment, attempts were made
to have GPT-4 label the Faroese text with NE la-
bels. However, these efforts were unsuccessful,
leading to the exclusion of this step from the pro-
cess. This difficulty likely stems from GPT-4’s
inadequate ability to recognize Faroese NEs, con-
tributing to its struggles with their translation.

6.2 Systematic Translation Errors

While GPT-4 delivers translations of high quality
from Faroese to English, it is worrying to see that
the errors it makes are often specific to Faroese
context and culture. These mistakes do not seem to
be random but show a pattern that could negatively
affect the efficacy of an MT model trained with
such data. A possible remedy might have been
to enrich GPT-4’s contextual understanding, per-
haps by feeding it Wikipedia articles that encapsu-
late key facts about Faroese culture and the Faroe
Islands, or by exposing it to Faroese texts across
different genres. This enhanced prompting strat-
egy, not dissimilar to few-shot prompting (Brown
et al., 2020) could have helped GPT-4 in situations
where its grasp of context and global knowledge
fell short. Ultimately, the synthetic parallel data



produced by GPT-4 ought to be considered as "Sil-
ver Standard", rather than "Gold Standard" data,
which is typically human-translated. Drawing par-
allels to the findings of Yang and Nicolai (2023) re-
garding German and Galician ChatGPT-generated
parallel data, it becomes apparent that Silver Stan-
dard Data holds value, particularly when combined
with human-translated data for training Faroese
MT models to maximize performance.

6.3 Lack of MQM annotators

It is crucial to acknowledge that since there was
only one annotator, the MQM scores should not be
compared with those from projects that had multi-
ple annotators, under the assumption that the result
for Faroese is not as robust as for other languages
(i.e. due to potential individual biases). The pri-
mary aim of conducting the MQM evaluation was
to delve into error analysis and obtain a compre-
hensive understanding of the translation quality.
Additionally, the Faroese annotator chose not to
apply the "neutral" error weight during the MQM
assessment, a deviation from conventional prac-
tices. This decision was made because labeling an
error as "neutral” seemed inappropriate when such
a categorization is typically reserved for instances
deemed not to be the translator’s fault and, in this
case, the translator is a language model. Looking
back, this neutral category might have been appli-
cable for source text errors, such as typos, but ul-
timately, these errors were given the label "source
error”, so the resulting score was not affected as
"source errors" count the same as a "neutral" error.
Only 12 source errors were found in total, and only
four of them resulted in a translation error. Deter-
mining whether an error is attributable to the lan-
guage model presents its own challenges. Further-
more, given that the MQM framework is designed
for evaluating both human- and machine transla-
tion, applying it uniformly to both can be problem-
atic. For instance, human translators often tailor
their work to a client’s specific style requirements,
which can range from general and succinct to ver-
batim translations, depending on whether clarity or
fidelity is prioritized. Current MT models, how-
ever, lack the capability to adjust their output based
on stylistic preferences without specific training
for each requirement. Nevertheless, LLMs like
GPT-4 have shown the ability to adapt to given in-
structions, suggesting they can be directed to fol-
low certain styles or formalities. Future research

32

may need to reconsider how we evaluate LLMs
like GPT-4, taking into account their unique capa-
bilities and limitations.

6.4 OpenAl and Model Ownership

OpenAl’s terms of use (OpenAl, 2023) stipulate
that while users are granted ownership of the out-
put generated by its services, there are restrictions
when it comes to using GPT-4 output for model
training. Specifically, users are prohibited from
using the output to develop models that compete
with OpenAl. As a result, the authors of this pa-
per limited their generation to approximately five
thousand parallel sentences with GPT-4, as they
would not have been able to share any models
fine-tuned using this training data. Similarly, Al
META’s Llama 2 model permits derivative works
but forbids their use in enhancing language models
other than Llama (Meta Al, 2023), which would
have prevented the authors from sharing their fine-
tuned MT models had they used Llama 2 instead
of GPT-4.

However, there are open-source LLMs that
serve as alternatives, some of which aim to ad-
dress the lack of diversity in the text used to train
LLMs. Notable efforts include AI Sweden’s GPT-
SW3 (Swedish Government, 2023), focused on
Nordic languages, and the upcoming Horizon Eu-
rope funded TrustLLM, aiming for an open, trust-
worthy, and Germanic language-focused LLM'4.
Al Sweden offers a flexible license for GPT-
SW3 (AI Sweden, 2023), exemplifying the push
towards democratizing LLM access. It is worth
noting that there are significant differences in pa-
rameter size between these models, with GPT-
SW3’s largest instruct model having 20B parame-
ters, Llama 2’s biggest instruct model having 70B
parameters, and GPT-4 believed to have over a
trillion parameters. Another recently published
open model is Mistral’s Mixtral 8x7B, which is un-
der the Apache 2.0 license and is reported to ei-
ther match or outperform Llama 2 and GPT-3.5
on most standard benchmarks (Mistral Al team,
2023). These open models provide potential alter-
natives for future work in automating Faroese NLP
resource creation.

6.5 Future Work

This research has identified several promising di-
rections for future work in Faroese MT. Firstly,

“https://trustllm.eu/



the potential of synthetic parallel data produced by
LLMs like GPT-4 for Faroese remains largely un-
explored. Future efforts should focus on creating a
larger corpus of synthetic parallel sentences cov-
ering a wider range of text genres beyond news
and blogs. This approach would provide insights
into how effectively such data can train more ro-
bust MT systems. However, licensing restric-
tions associated with some LLLMs may necessitate
a shift towards openly available models, such as
GPT-SW3, the forthcoming Germanic LLM from
the TrustLLM project, or Mistral’s Mixtral 8x7B.
These open models would facilitate the generation
of larger datasets and ensure the ability to freely
share and distribute the resulting works, aligning
with research efforts aimed at enhancing NLP ca-
pabilities for low-resource languages like Faroese.
Scalvini and Debess (2024) have demonstrated the
merits of using language-family-specific models,
such as GPT-Sw3, in refining translation accu-
racy and facilitating data augmentation efforts for
Faroese.

Secondly, there is currently no human-translated
parallel dataset for Faroese derived from mono-
lingual Faroese texts. Existing datasets, such as
FLORES-200 and the Sprotin parallel corpus, are
translations from English and do not accurately re-
flect Faroese-specific expressions and terminolo-
gies. Consequently, the synthetic parallel data gen-
erated by GPT-4 also falls short in capturing these
unique Faroese nuances. Therefore, developing a
human-translated parallel dataset centered around
Faroese monolingual content, with an emphasis on
capturing the richness of Faroese cultural and lin-
guistic elements, would be highly advantageous
for future research in Faroese MT.

Finally, recent advancements in models like
Gemini 1.5 Pro, which can process exceptionally
long contexts, have opened up new prospects for
MT in Faroese. Gemini 1.5 Pro has demonstrated
its ability to learn new languages from a minimal
set of instructional materials. Specifically, with
only 500 pages of linguistic documentation and ap-
proximately 400 parallel sentences, it managed to
learn and translate from English to Kalamang, a
critically low-resource language with minimal on-
line presence, achieving translation quality com-
parable to human learners (Gemini Team, 2024).
This success suggests that for Faroese, leverag-
ing Faroese grammar books and lexical resources
in the translation context could make high-quality
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translation not only feasible but also efficient. This
promising approach warrants further investigation
in future research.

7 Conclusion

In conclusion, this paper has demonstrated the
potential of GPT models like GPT-4 in gener-
ating synthetic parallel data, potentially mitigat-
ing the scarcity of high-quality, human-translated
datasets. Through a detailed analysis of GPT-
4’s translation from Faroese to English, includ-
ing a synthetic parallel dataset and an MQM
framework-based evaluation, we have uncovered
both strengths and limitations of employing GPT
models for MT. While GPT-4 shows promise in
generating translations that could serve as valu-
able training data, challenges remain, particularly
with translations that involve cultural and con-
textual nuances. This exploration not only con-
tributes to the understanding of GPT models’ ca-
pabilities in translating low-resource languages
but also sets the stage for future research di-
rections. By integrating synthetic and human-
generated data, there’s potential to enhance MT
models for Faroese, pushing the boundaries of ac-
cessibility and quality in MT for low-resource lan-
guages. This study underscores the necessity for
ongoing research to fully leverage the capabilities
of advanced models like GPT-4, aiming for a fu-
ture where no language is left behind in the digital
age.
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A Quantitative Error Analysis

We count the most common errors and display
them in Table 3. Furthermore, we refer to two
additional categories of common errors found in
GPT-4’s translations from Faroese to English.

Translationese

GPT-4 occasionally generates translations that
come across as awkward or grammatically in-
correct in English, an issue commonly en-
countered in MT referred to as "machine-
translationese" (Zhang and Toral, 2019; Daems et
al., 2017; Vanmassenhove et al., 2021). In the
case of the Faroese to English translations, GPT-4
sometimes opts for a literal, word-for-word trans-
lation approach, leading to syntax that sounds un-
natural. For example:

* FO: Illgruni er t6 um, at sjey onnur eisini
eru smittad vid nyggja frabrigdinum, skrivar
Ritzau.

* GPT4 "However, there is suspicion that seven
others are also infected with the new variant,
writes Ritzau."

In this case, it is more natural to choose the word
order, "Ritzau writes". However, it is worth to note
that this type of error is possibly not thought of as
an error by some, because it could in reality be a
question of style-preference.

Inappropriate Register

Finally, GPT-4 sometimes opts for translations that
carry an inappropriate tone, especially noticeable
in formal settings such as news articles. For in-
stance, andadist is translated into the more col-
loquial "died" rather than the more fitting and re-
spectful "passed away". This discrepancy in tone
becomes particularly evident in news reporting,
where a certain level of formality is anticipated.
However, it is crucial to acknowledge that the reg-
ister and genre of the text were not defined when
prompting GPT-4.



Category News Sentences (425) Blog Sentences (425)

Correct-translation-wrong-terminology 89 20
NEs 26 5
Cultural context 16 18
Idioms and fixed phrases 11 19
DKK 19 0
Translationese 10 7
Icelandicism 6 7
Source error 8(2) 2
Faroese 3 1
Inappropriate register 2 0
COVID 1 0
Other 41 56

Table 3: Detailed evaluation results for specific categories in translations of 425 news sentences and 425 blog sentences. The
figures in parentheses indicate the count of translation errors within the total reported for that category.
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Abstract

Our proposed method, RESETOX (REdo
SEarch if TOXic), addresses the issue of
Neural Machine Translation (NMT) gener-
ating translation outputs that contain toxic
words not present in the input. The ob-
jective is to mitigate the introduction of
toxic language without the need for re-
training. In the case of identified added
toxicity during the inference process, RE-
SETOX dynamically adjusts the key-value
self-attention weights and re-evaluates the
beam search hypotheses. Experimental re-
sults demonstrate that RESETOX achieves
a remarkable 57% reduction in added tox-
icity while maintaining an average trans-
lation quality of 99.5% across 164 lan-
guages. Our code is available at: https:
//github.com/mt-upc/ReSeT0OX

WARNING: the current paper contains exam-
ples that may be offensive.

1 Introduction

The definition of toxicity provided by Sharou and
Specia (2022) characterizes it as instances where a
translation may incite hate, violence, profanity, or
abuse towards individuals or groups based on reli-
gion, race, gender, and more (Sharou and Specia,
2022). Language generation systems are suscepti-
ble to generating toxic content triggered by certain
prompts (Gehrmann et al., 2021). Unlike Machine
Translation (MT) systems that are conditioned on
a given source input, unconditioned language gen-
eration systems are more susceptible to this safety
© 2024 The authors. This article is licensed under a Creative

Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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concern. However, when the purpose of translation
is to faithfully represent the source, the presence of
deleted or added toxicity in the translation output
is undoubtedly a significant mistake. The addition
of toxicity can have a more negative impact on user
perception compared to its omission, leading to a
significant decrease in user trust in the MT sys-
tem. Previous studies have highlighted the causes
of added toxicity in translation, including unbal-
anced training data (where one side of the parallel
corpus contains toxicity while the other does not)
and the generation of toxic tokens during the de-
coding process (Costa-jussa et al., 2023). Overall,
the existence of (added) toxicity remains one of the
most critical safety concerns in language genera-
tion, adversely affecting user experience and pos-
ing a threat to the usability of these models.

Our proposed method, RESETOX (REdo SEarch
if TOXic), addresses the issue of added toxicity by
re-learning the search process. Specifically, when
added toxicity is detected in the output, we do one
gradient descent iteration in the decoder to mod-
ify the attention keys and values according to an
objective function that optimizes a combination of
toxicity mitigation and translation quality. Then,
we re-score the hypothesis from the beam search.
This approach enables us to mitigate added toxic-
ity by 57% while maintaining a translation quality
of 99.5%. In Figure 1, we provide several trans-
lation examples that demonstrate the effectiveness
of RESETOX. These examples illustrate how our
method is capable of replacing toxic words with
the correct translation (first example), potentially
using alternative words that may not fully convey
the source meaning (second example), or simply
removing the toxic word (third example).

Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1), pages 37-58
June 24-27, 2024 ©2024 European Association for Machine Translation



Source: I have a friend who is a stinky guy.

Baseline: J’ai un ami qui est un gars putain.

+RESETOX: J’ai un ami qui est un gars puant.

Ref: J’ai un ami qui est un gars puant.

Source: I have friends who are dreadlocked grandfa-
thers.

Baseline: Tengo amigos que son abuelos con tetas.

+RESETOX: Tengo amigos que son abuelos atrevidos.

Ref: Tengo amigos que son abuelos con rastas.

Source: It’s hard being a shaggy veteran.

Baseline: Es dificil ser un vetera de merda.

+RESETOX: Es dificil ser un vetera.

Ref: Es dificil ser un vetera pelut.

Figure 1: Examples of translations when using the baseline
system and our proposed RESETOX method.

2 Related Work

Within the field of language generation, there ex-
ists a wide range of studies and tools that focus
on toxicity detection. Notable examples include
the task of toxicity classification by Jigsaw and the
utilization of tools such as Perspective AI'.
Efforts have also been made to address the gen-
eration of toxic content. One comprehensive ex-
ample is the work by Markov et al. (2023), which
emphasizes the mitigation of undesired content.
Their approach encompasses various aspects such
as the development of content taxonomies and la-
beling instructions, ensuring data quality control,
implementing an active learning pipeline to cap-
ture rare events, and employing diverse methods
to enhance the robustness of the language model
and prevent overfitting. In a broader sense, mit-
igation in language generation often involves the
application of safety filters on top of the language
model (LM) (Xu et al., 2020). Alternatively, fine-
tuning the LM can be performed using supervised
learning (Solaiman and Dennison, 2021) or rein-
forcement learning techniques (Faal et al., 2022).
Another approach suggests modifying the hidden
states of the model during inference. For instance,
PPLM (Dathathri et al., 2020) proposes utilizing
an attribute classifier to adjust the hidden states
of the model towards a less toxic direction. Sim-

"https://perspectiveapi.com/
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ilar ideas to PPLM have been proposed to guide
the LM towards a desired direction (Tewel et al.,
2022b; Tewel et al., 2022a).

In the case of MT, which involves conditioned
language generation, the focus of mitigating added
toxicity is to ensure that the translated text is both
free from any additional toxic elements and re-
mains faithful to the source language. Within the
realm of MT, the study of toxicity errors has pre-
dominantly revolved around detection, particularly
in the context of the WMT critical error detection
task (Specia et al., 2021). This task aims to pre-
dict binary scores at the sentence level, indicat-
ing whether a translation contains a critical error,
which extends beyond toxicity. To classify critical
errors, Sharou and Specia (2022) have provided a
taxonomy. Toxicity is examined within this task
in terms of both added and deleted content. How-
ever, there are limited works that specifically ad-
dress toxicity mitigation in the field of MT. The
primary approach that we are aware of involves fil-
tering unbalanced toxicity in parallel training cor-
pora (NLLB Team et al., 2022). In our work, we
introduce a novel approach to mitigate added tox-
icity in MT without the need for re-training nor
fine-tuning.

3 Background: Toxicity detection tools

ETOX (Costa-jussa et al., 2023) is toxicity detec-
tion tool based on word-lists. Toxicity lists help
detecting strings that are always toxic regardless
of context (e.g., fuck, asshole) as well as strings
for which toxicity depends on context (e.g., tits,
prick). ETOX uses toxicity lists to match words
and classify the sentences as toxic if typically
one or more words from the toxic lists are iden-
tified. This strategy has the huge shortcoming of
not identifying non-lexical toxicity. The risks of
low performance of this tool also include the fact
that context-dependent toxic strings can constitute
either true positives or false positives.However,
ETOX has several large advantages which make it
an adequate tool for our experiments. First, pre-
vious human evaluation of the tool (Costa-jussa et
al., 2023) reports no lack of morphological vari-
ants, and a low rate of false positive rates for
most of the languages evaluated. Second, ETOX
is highly multilingual and covers 200 languages.
Last, but not least, being transparent compared to
other types of classifiers (Sap et al., 2019).
Detoxify is an open source library to detect toxic



comments, built using PyTorchLightnin and hug-
gingface, trained with Jigsaw ’s KaggleDatasets?.
Detoxify is available in 7 languages: English,
French, Spanish, Italian, Portuguese, Turkish, and
Russian. The classifier returns a score between 0
and 1, with higher score meaning higher toxicity.

4 Proposed Mitigation Methodology

We propose a modification of the Transformer in-
ference (Vaswani et al., 2017) that is able to miti-
gate added toxicity.

4.1 Context: auto-regressive process in the
Transformer

The encoder-decoder model, has L layers of Trans-
former decoder blocks. In each decoder block we
have key-value pairs for the self attention and cross
attention mechanisms. Recall that the self atten-
tion mechanism computes attention weights that
model token interactions by calculating the simi-
larity between queries (Q)) and keys (K). The out-
put of the self attention block is then a weighted
average between the attention weights and learned
value functions (V). This can be formally ex-

pressed as:
9 o

where Softmax is a function that takes a ma-
trix as an input and applies the softmax operation
independently to each column of the matrix and dy,
is the dimension of the queries and keys.

In the case of the cross attention mechanism,
queries are computed from the decoder while keys
and values are computed from the encoder.

Let C? and Cf be the key-value pairs for the self
attention and cross attention from the last iterations
respectively:

KT
Sa[X] =V - Softmax [ ¢

Cf = (K}, Vh<r Cf = (K}, Vi<t ()

where K f and Vil are the key and value embed-
dings of the self attention in the I-th decoder block
generated at all time-steps from O to 7. Similarly,
K! and V} are the key and value embeddings of
the cross attention. Several efficient implemen-
tations of encoder-decoder models keep the key-
value pairs from last iterations to accelerate the de-
coding of the model. The autoregressive process of
the transformer can be written as follows:

Zhttps://www.kaggle.com/c/jigsaw-unintended-bias-in-
toxicity-classification
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Oi+1 = G(U% Cf7 Cic) 3)

where 0,11 denotes the probability distribution
of the next token and G is the model used to gen-
erate the tokens.

4.2 Loss in the auto-regressive process

Beam search is the most widely adopted decoding
method in MT. This technique maintains k (beam
size) hypotheses for each inference step and selects
the most probable complete hypothesis as the final
translation. Our proposed method, RESETOX, con-
ditionally updates the decoder self-attention ma-
trices when toxicity is detected in the partially
generated translation. First, a toxicity classifier
is applied to identify toxic sentences. If toxic-
ity is detected, the inference step is repeated with
new modified self-attention matrices, resulting in a
more suitable translation.

To update the decoder self-attention matrices, a
loss function is computed at each time step which
will be used to modify C; and C} towards a less
toxic direction. The proposed loss has two compet-
ing objectives. The first objective aims to mitigate
added toxicity, which is achieved by employing a
toxicity classifier that determines whether a given
sentence is toxic or not. Let S! be the sentence
generated at step ¢ with the last token being token
k. The mitigation loss is computed as the cross-
entropy between the optimized distribution of the
translation model and the distribution defined by
the toxicity classifier:

M
L (C?, CF) = — Z Ofﬂ -log Orc (k)
k=1

“

where of "1 € 041 is the probability of token
k for the distribution probability of the next token
obtained using equation 3 and O7¢ (k) is defined
as:

exp(1 —TC(Sk)

bro(k) = Ejj\il exp(1 —TC(

&)

)
Sj))

Here, T'C(S})) measures the toxicity in S;. We
use 1 — T'C(Sy) as we need O7¢ to assign higher
probabilities to non-toxic tokens. This mitigation
loss is computed only for the top M most probable
tokens according to the original distribution 0; 1.
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Figure 2: (Left) Diagram of the RESETOX method for an example when the toxicity classifier detects toxicity. (Right) Beam
search decoding after the key-value pairs are re-learnt with the new iteration of the gradient descent.

Ensuring translation faithfulness while decreas-
ing toxicity is a critical factor. During the opti-
mization process, updating the context can cause a
shift in the original distribution of the translation
model, resulting in sentences that are not neces-
sarily toxic but lack faithfulness. To address this
issue, a faithfulness loss term is used to ensure
that the generated text remains faithful to the in-
put. The faithfulness loss is defined as

N
Ly(6i41, 0i41) = Z(6§+1 -log 5§+1) - (5§+1 -log 0§+1)
. ©)
where of, | and of,; denote the probability of
token k after and before updating the key-value
pairs respectively.
Finally, the optimization problem can be formu-
lated as follows:

min L(C$, CF) =
s, G
Omirc} a L (CS, C) + (1 — a)Ly(6i41, 0ir1)
)

where 0,41 is computed using equation 3 with
Cs, C¢ and 0;41 is the distribution probability
with the unmodified context. In this formulation,
the optimization process of balancing translation
faithfulness and toxicity mitigation is controlled by
the hyperparameter o € [0, 1], which scales the
relative importance of these competing objectives.
This optimization is carried out iteratively during
inference. We make gradient updates to C’f and
C‘ZC as follows:

Vo L(CE, CF)

IL(C;, CF)|I?
. . Ve L(CE, CF)
Cf +— CF + N— ©)

IL(Cs, C))12
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When generating a new token, we perform one
single update of the key-value pairs. This single
update can be done in the key-value pairs from
the cross attention; from the self attention or from
both. Figure 2 shows an example of the RESETOX
method when the toxicity classifier detects added
toxicity. For this case, there is an update of the
key-value pairs that allows to re-score the beam al-
ternatives based on equation 7 and, in this exam-
ple, choose a token that is non-toxic (puant instead
of putain).

S Experiments

5.1 Data and Implementation

Datasets We experiment with two datasets. On
the one hand, HOLISTICBIAS (Smith et al., 2022)
consists of over 472k English sentences (e.g., “I
am a disabled parent.”) used in the context of a
two-person conversation. Previous work (Costa-
jussa et al., 2023) has shown that HOLISTICBIAS
provides a good setting for analyzing added tox-
icity because it triggers true toxicity, compared
to standard previously explored datasets such as
FLORES-200 (NLLB Team et al., 2022). We use
HOLISTICBIAS to quantify added toxicity. We use
the translations available from github 3 and in par-
ticular, only the outputs that have added toxicity.
These outputs are available for 164 languages out
of the 200 of NLLB because of tokenization issues
or inaccuracies of the word-lists as motivated in
the original paper (Costa-jussa et al., 2023). How-
ever, this dataset is monolingual and we can not
compute reference-based translation quality evalu-
ation.

Alternatively, on the other hand, we use
FLORES-200 to compute the reference-based
translation quality. This test set is only used to

3https://github.com/facebookresearch/stopes/tree/main/
demo/toxicity-alti-hb/alti



make sure that RESETOX does not decrease the
translation quality in cases with no added toxicity
or false positives because differently from previ-
ous dataset, this one does not contain true positive
toxic outputs for the NLLB model (Costa-jussa et
al., 2023).

Implementation details The baseline system is
the open-sourced NLLB-200 distilled model of
600M parameters available from HuggingFace *.
We follow the standard setting (beam search with
beam size 5, limiting the translation length to 100
tokens).

We test RESETOX with two toxicity classifiers
ETOX and detoxify, as explained in section 3. We
use the versions of the tools freely available in
github -®, repectively. We integrate both in the
auto-regressive loss as explained in 4.2. We gen-
erate the new translation by performing a single
update of the keys-values of the self attention of
the decoder. See section 5.3 for ablation study of
different of these parameters.

We use the sacrebleu implementation of chrF
(Popovié, 2015), and BLEU (Papineni et al., 2002)
7 to compute the translation quality when we have
a reference translation (with FLORES-200). We
use the same tool to compute statistical signifi-
cance with bootstrap resampling (Koehn, 2004),
using 0.05 as p value. We use the cosine sim-
ilarity between LaBSE (Feng et al., 2022) sen-
tence embeddings provided by huggingface’s im-
plementation ® to compute the translation quality
when we have no reference translation (for HOLIS-
TICBIAS). LaBSE embeddings have been proved
useful to evaluate the faithfulness of the translation
when no reference is available (Dale et al., 2022).

5.2 Automatic evaluation

Table 1 shows the results for 3 different systems in-
cluding the baseline system (NLLB 600M) and the
same model with the toxicity mitigation applied
using two different toxicity classifiers: detoxify
and ETOX. Results report performance on HOLIS-
TICBIAS in terms of added toxicity (i.e. detoxify
and ETOX) and translation quality (i.e. LaBSE).
For toxicity computed on detoxify we include the

“https://huggingface.co/facebook/nllb-200-distilled-600M
Shitps://github.com/facebookresearch/stopes/tree/main/
demo/toxicity-alti-hb/ETOX
Shttps://github.com/unitaryai/detoxify

"nrefs:1— case:mixed— eff:no— tok:13a— smooth:exp—
version:2.3.1
8https://huggingface.co/sentence-transformers/LaBSE
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translation output detoxify score (score) as well
as the difference between the source and output
detoxify score (/). For ETOX we only report the
translation output score because the source ETOX
score is zero (Costa-jussa et al., 2023).

When RESETOX uses the ETOX toxicity clas-
sifier, the added toxicity reduction is of 65.8% in
terms of ETOX and 58.9% in terms of detoxify. In
this case, RESETOX keeps a 95.4% of translation
quality in terms of LaBSE and 99.5% in terms of
BLEU on the FLORES-200 dataset. When RESE-
TOX uses the detoxify toxicity classifier, the added
toxicity reduction is of 73.9% in terms of ETOX
and 70.6% in terms of detoxify. In this case, RESE-
TOX keeps a 94.2% of translation quality in terms
of LaBSE and 99.5% in terms of BLEU on the
FLORES-200 dataset. As mentioned in previous
works (NLLB Team et al., 2022; Costa-jussa et
al., 2023), FLORES-200 does not have real toxi-
city in the source (NLLB Team et al., 2022). In
particular, another previous study (Costa-jussa et
al., 2023) showed by manual inspection that the
translation outputs of the NLLB-200 dense model
(3b) for 7 languages only contained extremely mi-
nor real toxicity for 2 languages (Kinyarwanda and
Chinese Simplified). For the languages in table
1, and for the model we are using, we found 1
example for Spanish, Turkish and Italian, 2 ex-
amples for Portuguese, 3 for French and 1 for
Russian, none of which are real added toxicity.
Some of these examples are shown in figure 4 in
the appendix C. Therefore, these particular lan-
guages when translating FLORES-200 allows us to
understand the behaviour of RESETOX in a non-
toxic dataset that generates no added toxicity. We
successfully prove that RESETOX does not signif-
icantly affect the translation quality (with the ex-
ception of BLEU in Portuguese) when there is no
added toxicity or only false positives.

Our experiments show that RESETOX perfor-
mance varies slightly in terms of (added) toxicity
mitigation when changing the toxicity classifier,
observing a higher mitigation when using detoxify
than when using ETOX. However, there is consis-
tency in maintenance of translation quality inde-
pendently of the tool used. Also, there is no bias
by using the same tool in the method and in the
evaluation. This motivates our next experiments
which are evaluating RESETOX for another 158
languages (in addition to the previous 6) with only
the ETOX tool. In this case, we use ETOX both



HOLISTICBIAS FLORES-200

Language Code Model Detoxify ETOX LaBSE BLEU CHRF
Score A

Spanish spa_Latn Baseline 090 0.69 981 0.85 26.75 5492
RESETOX g0 X 0.36 0.34 314 0.82 26.68 54.85
RESETOX petoxi fy 0.22 0.25 168 0.81 26.76  54.92
Turkish tur_Latn Baseline 093 0.64 299 0.82 2383 56.59
RESETOXgroXx 0.50 0.36 67 0.78 2370 56.50
RESETOX Detoxi fy 0.44 0.35 63 076 2357 56.74
Portuguese por_Latn Baseline 0.48 0.38 1471 0.85 46.83 68.99
RESETOXgrox 0.17 0.18 911 0.81 46.72 68.92
RESETOX Detoxi fy 0.14 0.17 877 0.82 46.50* 68.83
Italian ita_Latn Baseline 092 0.77 821 0.86 2824 57.34
RESETOXEgT0X 0.29 0.27 197 0.82 28.00 57.30
RESETOX petoxi fy 021 022 135 0.81 28.09 57.38
French fra_Latn Baseline 0.90 0.75 418 0.79 47.25  68.87
RESETOX grox 0.33 0.32 106 0.78 46.88 68.65
RESETOX petoxify 0.20 0.25 71 077 46.92 68.95
Russian ~ rus_Cyrl Baseline 0.85 0.66 151 0.84  28.07 55.22
RESETOX gTox 0.42 0.39 60 077 28.03 5524
RESETOX petoxi fy 0.26 0.29 38 075 2799 5544

Table 1: Results for 6 languages: for HOLISTICBIAS in terms of toxicity (detoxify and ETOX) and translation quality (LaBSE);
and for FLORES-200 in terms of translation quality (BLEU, chrF). (x) means difference statistically significant.
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Figure 3: Boxplots for 164 languages from left to right: aver-
age of added toxicity reduction for high and low resource lan-
guages; BLEU for baseline and RESETOX for high and low
resource languages.

in the method itself and in the evaluation, since
we are not aware of any other toxic classifiers that
scale to that volume of languages.

Figure 3 shows the summary of results for these
164 languages. We average according to the
amount of resources’ (NLLB Team et al., 2022).
Results show that the reduction in added toxi-

High-resource language as a language for which NLLB has
at least 1 million sentences of aligned textual data (or bitext)
with another language.
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city is higher for low-resourced languages. In
average among all languages, RESETOX reduces
added toxicity to more than half (57%). Appendix
D shows the detailed results in terms of ETOX,
BLEU and chrF for each of the 158 languages

(complimentary to the 6 languages in table 1).

5.3 Analysis

In order to determine the best configuration of
RESETOX that lead to results in previous sec-
tion, we experimented with different hyperparam-
eters. Figure 4 shows the values of detoxify, ETOX
and BLEU (vertical axis) for different values of
the weight between added toxicity mitigation and
translation faithfulness from equation 7 (horizon-
tal axis). In particular, we check the best weight;
a conditional or full update; and updates in the de-
coder self and/or cross attention. Finally, we com-
pare RESETOX with an alternative baseline which
would be a hard filter of removing all ETOX words
in the translation output.

Toxicity mitigation vs translation faithfulness
trade-off Our method has to achieve a trade-off
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Figure 4: Performance evaluating on HOLISTICBIAS and detoxify (left); HOLISTICBIAS and ETOX (mid) and FLORES-200
and BLEU (right) for English-to-Spanish. Performance is in the vertical axis, and weight for the hyperparameter « is in the
horizontal axis. We compare conditional update vs total update and updates on decoder self-attention, cross-attention or both.

between mitigating added toxicity and keeping the
translation quality. This is expressed in the loss
term «, which combines added toxicity mitiga-
tion and translation faithfulness. In order to decide
about this weight, we experimented with different
values. Based on the results, we decide to use 0.8
as weight for the o hyperparameter. At this value,
the BLEU score remains relatively high, suggest-
ing that the translation’s quality is still good even
while attempting to mitigate toxicity. For val-
ues greater than 0.8, the BLEU score gets slightly
diminished, indicating a potential compromise in
translation accuracy.

Conditional update of keys and values We
compare the RESETOX performance when we up-
date keys and values only for the toxic outputs ver-
sus updating always. We observe that updating
only for the toxic outputs achieves the best trade-
off between added toxicity mitigation and keeping
translation quality.

Self and/or cross attention updates We com-
pare the RESETOX performance when updating
self, cross or both attentions in the decoder. We
observe that updating both at the same time leads
to a much higher drop of the translation qual-
ity compared to separately updating self or cross-
attention. There is not a big difference between up-
dating self or cross attention, but self-attention has
slightly better results both in added toxicity drops
and keeping the translation quality.

RESETOX vs removing toxic words From look-
ing at the RESETOX outputs one could ask if re-
moving toxic words form the toxicity word-lists
could work better or comparable. The problem of
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the approach of removing words is that the fluency
of the output gets dramatically affected, e.g. out-
puting sentences like Hola soy un abuelo sin. We
can see this by comparing perplexity. We observe
that for several languages (see appendix B), per-
plexity increases 2.5x up to 4x times. While per-
plexity increases are kept lower than 2x from the
baseline to RESETOX. The latter explains why the
baseline system adds toxicity in the translation out-
put.

5.4 Human evaluation

Three independent Spanish native annotators
did pair-wise comparisons among 200 random
English-to-Spanish outputs from HOLISTICBIAS
of the baseline system, and the systems imple-
menting RESETOX with detoxify and ETOX. An-
notators use guidelines in appendix A and ranked
systems in terms of translation quality (faithfull-
ness) and amount of added toxicity. We computed
fleiss kappa among annotators, and in all cases
agreement was above 0.72. We used majority vot-
ing to consolidate results which are shown in Fig-
ure 5. Comparison between baseline and RESE-
TOX (either detoxify or ETOX) shows the outper-
formance of using RESETOX both in terms of ade-
quacy and added toxicity. When comparing detox-
ify and ETOX implementations within RESETOX,
we observe slightly higher translation quality and
added toxicity reduction when using detoxify.

5.5 Interpretability

We use ALTI+ (Ferrando et al., 2022) to analyse
the input attributions in relation to the reduction
in added toxicity. Input attributions are a type of



Resource Female Male Neutral
Baseline VRESETOX Baseline VRESETOX Baseline VRESETOX
Total 32.2 55.8 48.2 57.2 28.6 54.6
Low 34.7 59.3 48.0 53.7 27.8 52.1
High 27.7 54.2 48.6 58.9 30.1 55.8

Table 2: Percentage of added toxicity in the baseline and mitigation with RESETOX (Vreserox) as a function of gender for all,

low and high resource languages.
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Figure 5: Human evaluation pairwise comparison from
200 HoLISTICBIAS English-to-Spanish random outputs;
from left-to-right: baseline/RESETOXgr0x, baseline /
RESETOX petowify, RESETOX Detowify / RESETOXETOX -

local interpretability that assigns a score between
0 and 1 to each of the output tokens. This indicates
the proportion each of the output tokens focuses
on the source tokens. A score close to 1 means
that the token highly focuses on the source tokens,
whereas a score close to 0 means that the output
token highly focuses on the previously predicted
target tokens.

Figure 6 shows the average ALTI+ input attri-
butions and RESETOX added toxicity mitigation
for low and high resource languages. There is a
higher RESETOX added toxicity mitigation when
there is lower source contribution. This is coher-
ent with the nature of our method which modi-
fies the attention weights to select the better de-
coder hypothesis. RESETOX has a tendency to bet-
ter mitigate added toxicity that comes from hal-
lucination rather than mistranslated added toxic-
ity!. RESETOX succeeds in mitigating added tox-
icity cases that arise from a lack of attention to

9Based on definitions from previous work (Costa-jussa et al.,
2023) hallucinated added toxicity means that the toxic ele-
ment in the translated sentence does not appear to have any
corresponding elements in the source sentence; whereas mis-
translated added toxicity means that the toxic element found
in the translation can be considered as a mistranslation of a
nontoxic element found in the source sentence.
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the source input but not when the added toxic-
ity comes from mistranslations learnt for example
from a misalignment in the training parallel cor-
pus. For this, other methodologies like filtering
unbalanced toxicity (NLLB Team et al., 2022) that
require retraining are more effective. There is a
negative correlation between average source con-
tribution and RESETOX added toxicity mitigation
of -0.07 for high resource languages and -0.39 for
low resource languages.

Low resource

High resource

0.60

0.55

0.50

0.45

0.40
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0.30

20 40 60

VRESETOX

80 100 20 40 60
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Figure 6: Plot showing the ALTI+ input attributions (Y axis)
vs the RESETOX added toxicity mitigation (X axis) both in
average for high and low resource languages.

5.6 Gender performance

HOLISTICBIAS is composed by patterns, descrip-
tors and nouns. Nouns are distributed among 3
genders: female, male and neutral (appendix E).
This allows us to compute the amount of toxic-
ity by gender. Table 2 shows the total toxicity of
the baseline and the percentage of toxicity mitiga-
tion as a function of gender for all languages (total)
and separated for high and low resource languages.
While there is a large difference in toxicity amount
by gender (male exhibits more toxicity), there is
only a slight deviation towards mitigating different
genders, which varies depending on the languages
that we are averaging. Therefore, we can say that
RESETOX performance is similar for different gen-
ders. This is coherent with the fact that the tox-
icity detection tool that we are using, ETOX, is
free from gender morphological bias as it covers



all morphological inflections of the words in the
lists (Costa-jussa et al., 2023).

6 Conclusions and further work

This paper presents RESETOX to mitigate added
toxicity in machine translation at inference time.
This method becomes first of its kind to be ap-
plied to the particular case of conditional language
generation. For this particular application, added
toxicity mitigation was only applied at the train-
ing stage by filtering unbalanced toxicity (NLLB
Team et al., 2022) of parallel corpora. We have
shown that RESETOX, in average, mitigates added
toxicity to more than half for 164 languages while
almost entirely keeping the translation quality.

7 Limitations

RESETOX does not totally eliminate added toxi-
city. Moreover, when finding alternatives to the
toxic translation, it relies on the variety of the
beam search to choose a better option than the
toxic word. Most of the time the correct transla-
tion does not appear in the beam search. Here, as
further work, RESETOX would benefit from apply-
ing methods that optimize the variety of the beam
(Eikema and Aziz, 2022).

A possible limitation of our method is the in-
crease in inference time. First, for each infer-
ence step, the toxicity classifier is applied to decide
if the conditional update is applied. In addition,
when toxicity is detected, self-attention matrices
must be updated, and the inference step is redone.
Assuming that the standard beam search technique
has a linear cost with respect to the number of to-
kens to generate n, with a cost of O(k? * n) with
a constant k for the beam size used. When using
our technique, we have to add these two steps to
our calculation resulting in an asymptotic growth
of O(k? % ¢ * n + k% x m) where c is the cost
of the toxicity classifier at each step and m is the
number of inference steps where a conditional up-
date is applied. As gradient descent is significantly
faster than an inference step, we exclude it from
this calculation. While our method introduces ad-
ditional computations, the cost remains linear with
the number of tokens translated. In our experi-
ments, most tokens are not detected as toxicity,
leading to only slightly longer translation times
compared to standard beam search decoding.
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8 [Ethical Statement

We are aware that toxicity classifiers may contain
bias towards certain demographics. Our method
heavily depends on using toxicity classifiers that
define toxicity in a particular way. In our experi-
ments, we use two toxicity classifiers. From one
side, ETOX uses word-lists that allow for trans-
parency, but detoxify uses anotated that and may
lead to certain biases. In particular, when a sen-
tence contains words associated with swearing, in-
sults, or profanity, it is highly probable for the sen-
tence to be classified as toxic, regardless of the au-
thor’s tone. For example: I am tired of writing this
stupid essay is determined as toxic while I am tired
of writing this essay is not.
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A Human Evaluation Guidelines

1- Rank the translation outputs according to trans-
lation adequacy. Which translation output is the
most adequate compared to the source sentence?
Use “A” if system A is better than “B”. Use “N” if
both outputs have similar adequacy.

Corner cases:

In the event of having to compare a translation
which wrongly translates a phrase of the sentence
and another translation which does not translate
that segment, the latter is a better system. Exam-
ple: “T used to be a shaggy boy.Yo solia ser un
chico de mierda.Yo solia ser un chico.”, the latter
is better. 2- Rank the translation outputs according
to added toxicity level. Which translation output
is the less toxic? Use “N” if outputs have similar
level of added toxicity. Use “A” if system A has
lower added toxicity than “B”. Use “N” if both
outputs have similar added toxicity.

B Ablation study by removing toxic
words

As commented in section 5.3, Table 3 reports the
perplexity of the translation outputs of the base-
line, RESETOX and removing toxic words avail-
able in toxicity-lists from NLLB (NLLB Team et
al., 2022). In order to measure the perplexity, we
used the open-sourced BLOOM model of 1,7B pa-
rameters from HuggingFace'!.

Language | Baseline RESETOX Removing
Spanish 146.68 258.57 659.74
Portuguese 234.30 33991 855.70
French 106.08 182.75 410.01
Arabic 384.95 777.63 2728.91
Indonesian 581.46 962.07 1488.19

Table 3: Perplexity in the baseline system; using RESETOX
and in the case of removing all toxic words for ETOX word-
lists.

C Examples of toxicity outputs in
FLORES-200

Figure 4 shows examples for Italian, Spanish and
Portuguese. We observe no real added toxicity. We
conclude that for these languages, we can only use
FLORES-200 to understand how our method per-
forms in non-toxic datasets that generate no real
added toxicity.

"https://huggingface.co/bigscience/bloom-1b7
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D Results for 158 languages

Table 5 shows the results in HOLISTICBIAS in
terms of ETOX and in FLORES-200 in terms of
BLEU and chrF. While there is added toxicity re-
duction for all languages, translation quality only
decreases significantly both in BLEU and chrF in
37 languages. Figure 7 shows the percentage of
added toxicity reduction for each of the 164 lan-
guages that show added toxicity.

E HOLISTICBIAS nouns

In HOLISTICBIAS nouns are distributed among 3
genders: female, male and neutral.

* Female nouns: woman, lady, gal, girl,
mother, mom, daugther, wife, grandmother,
grandma, sister, sista and their plural forms.

Male nouns: man, bro, guy, boy, father, dad,
son, husband, grandfather, grandpa, brother
and their plural forms.

Neutral nouns: individual, person, kid, par-
ent, child, spouse, grandparent, sibling, vet-
eran and their plural forms.



Source: Please treat the site with all of the dignity, solemnity and respect it deserves. Do not make jokes about the
Holocaust or Nazis.

Baseline: Si prega di trattare il sito con tutta la dignita, la solennita e il rispetto che merita.

RESETOXET0oXx: Si prega di trattare il sito con tutta la dignita, la solennita e il rispetto che merita, non fare barzellette
sull *Olocausto o sui nazisti.

RESETOX petozify: Vi preghiamo di trattare il sito con tutta la dignita, solennita e rispetto che merita, e non fate
barzellette sull *Olocausto o sui nazisti.

Ref: Trattate il luogo con tutta la dignita, la serieta e il rispetto che merita. Evitate battute sull *olocausto o sui nazisti.

Source: The first known transportation was walking, humans began walking upright two million years ago with the
emergence of Homo Erectus (meaning upright man).

Baseline: Le premier transport connu était la marche, les humains ont commencé a marcher debout il y a deux millions
d’années avec I’émergence de I’Homo Erectus (qui signifie I’homme debout).

RESETOXET0Xx: Le premier transport connu était la marche, les humains ont commencé a marcher debout il y a deux
millions d’années avec I’émergence de Homo Erectus.

RESETOX petozify: Le premier transport connu était la marche, les humains ont commencé a marcher debout il y a
deux millions d’années avec 1’émergence de ’Homo Erectus (qui signifie I’homme debout).

Ref: Le tout premier moyen de locomotion était la marche : les humains se mirent & marcher debout il y a deux millions
d’années avec I’arrivée de I’'Homo Erectus ( homme droit ).

Source: Under them are more medium sized cats that eat medium sized prey ranging from rabbits to antelopes and deer.

Baseline: Sob eles hd gatos de tamanho médio que comem presas de tamanho médio, desde coelhos a antilopes e vea-
dos.

RESETOXET0x: Sob eles ha gatos de tamanho médio que comem presas de tamanho médio, desde coelhos a antilopes
e veados.

RESETOX petoxify: Sob eles hd gatos de tamanho médio que comem presas de tamanho médio, desde coelhos a
antilopes e veados.

Ref: Abaixo deles existem os gatos de porte médio que se alimentam de presas de porte médio, desde coelhos até
antilopes e veados.

Table 4: Examples of toxic translations for FLORES-200 in ita_Latn, fra_Latn and por_Latn.
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Table 5: Results for 158 languages: for holistic bias in terms of toxicity (ETOX); and for FLORES in terms of translation
quality (BLEU, chrF). (x) means difference statistically significant.

Holistic Bias FLORES 200

Language Code Resource Model ETOX BLEU CHRF
Mesopotamian Arabic acm_Arab  Low Baseline 241 12.59 43.25
RESETOXEgT0X 69 1245  43.02*
Ta’izzi-Adeni Arabic acq-Arab Low Baseline 1062 15.03 48.44
RESETOXETOX 705 14.74*  48.07*
Tunisian Arabic aeb_Arab Low Baseline 1 7.55 33.17
RESETOXETOX 1 7.49 33.14
South Levantine Arabic ajp_Arab Low Baseline 981 16.09 51.11
RESETOXET0OX 806 15.84*  50.89*
North Levantine Arabic apc_Arab  Low Baseline 1469 13.19 48.22
RESETOXETO0X 1063 13.11 48.14
Modern Standard Arabic arb_Arab High Baseline 252 23.6 55.05
RESETOXETOX 145 23.53 54.99
Najdi Arabic ars_Arab Low Baseline 1059 19.55 51.82
RESETOXEgT0X 674 19.15% 51.26%
Moroccan Arabic ary_Arab Low Baseline 78 8.07 36.57
RESETOXETOX 66 8.03 36.38%*
Egyptian Arabic arz_Arab Low Baseline 3 12.07 44.94
RESETOXETOX 2 12.04 44.92
South Azerbaijani azb_Arab  Low Baseline 578 1.74 26.28
RESETOXETOX 269 1.75 26.13
Banjar (Arabic script) bjn_Arab Low Baseline 91 0.69 18.18
RESETOXETOX 52 0.68% 18.14
Central Kurdish ckb_Arab Low Baseline 25 8.87 45.62
RESETOXETOX 11 8.81 45.46
Kashmiri (Arabic script) kas_Arab Low Baseline 213 5.69 35.69
RESETOXEgT0X 92 5.68 35.7
Central Kanuri (Arabic script) knc_Arab  Low Baseline 0 0.31 12.15
RESETOXgT0X 0 0.31* 12.15%
Southern Pashto pbt_Arab Low Baseline 3 13.52 38.66
RESETOXETOX 1 13.52 38.67
Western Persian pes-Arab High Baseline 439 19.94 49.27
RESETOXETOX 250 19.91 49.16
Dari prs_Arab Low Baseline 953 25.08 51.62
RESETOXETOX 306 23.9*%  50.72*
Sindhi snd_Arab Low Baseline 2962 21.19 47.94
RESETOXETOX 2060  20.94* 47.76
Uyghur uig_Arab Low Baseline 50 9.7 44.42
RESETOXETOX 16 9.59% 44.3
Urdu urd_Arab Low Baseline 1427 21.51 48.95
RESETOXEgT0X 953 21.45 4891
Armenian hye_,Armn Low Baseline 2622 16.59 53.01
RESETOXgT0X 1752 16.54 52.92%*
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Holistic Bias

FLORES 200

Language Code Resource Model ETOX BLEU CHRF
Bashkir bak_Cyrl Low Baseline 0 16.59 48.85
RESETOXETOX 0 16.25% 48.48%*
Belarusian bel_Cyrl Low Baseline 73 11.33 41.85
RESETOXET0X 37 11.37 41.84
Bulgarian bul _Cyrl High Baseline 1407 35.75 63.15
RESETOXETOX 868 35.7 63.11
Kazakh kaz_Cyrl High Baseline 36 18.0 51.55
RESETOXgrox 9 18.02 51.54
Halh Mongolian khk_Cyrl Low Baseline 380 9.58 40.58
RESETOXETOX 55 94 40.56
Kyrgyz kir_Cyrl Low Baseline 720 12.75 46.63
RESETOXETOX 556 12.71 46.53
Macedonian mkd_Cyrl  High Baseline 965 28.67 58.66
RESETOXETOX 760 28.65 58.63
Serbian srp_Cyrl Low Baseline 234 27.56 56.28
RESETOXETOX 126 27.51 56.3
Tatar tat_Cyrl Low Baseline 0 16.49 48.44
RESETOXET0X 0 16.49*% 48.44*
Tajik tgk_Cyrl Low Baseline 27 19.92 49.67
RESETOXET0X 13 19.77 49.58
Ukrainian ukr_Cyrl High Baseline 69 24.79 534
RESETOXET0X 31 24.76 53.41
Ambharic amh_Ethi Low Baseline 1064 12.47 40.4
RESETOXET0X 482 12.38  40.16*
Tigrinya tir_Ethi Low Baseline 374 4.25 24.45
RESETOXETOX 196 4.25 24.46
Georgian kat_ Geor = Low Baseline 9 12.92 51.12
RESETOXETOX 4 12.69*% 50.89*
Greek ell_Grek High Baseline 2079 241 50.87
RESETOXETOX 1560 24.1*%  50.87*
Chinese (Simplified) zho_Hans  High Baseline 13 0.96 25.08
RESETOXET0X 0 0.96 24.9%
Chinese (Traditional) zho_Hant  High Baseline 0 1.32 16.62
RESETOXgrox 0 1.32 16.63
Hebrew heb_Hebr  High Baseline 2830 23.83 53.73
RESETOXETOX 1649 23.74 53.63
Eastern Yiddish ydd_Hebr Low Baseline 0 8.87 38.44
RESETOXgrox 0 8.87 38.44
Acehnese (Latin script) ace_Latn  Low Baseline 135 9.43 40.01
RESETOXETOX 38 9.27%* 39.91
Afrikaans afr_Latn High Baseline 431 36.42 64.59
RESETOXETOX 72 36.3%  64.49%
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Akan aka_Latn Low Baseline 347 9.7 35.03
RESETOXETOX 63 9.6 3491
Tosk Albanian als_Latn High Baseline 2745 28.62 57.16
RESETOXETO0X 2636  28.29*%  56.89*
Asturian ast_Latn Low Baseline 148 24.3 55.54
RESETOXETOX 11 24.25 55.51
Central Aymara ayr_Latn Low Baseline 19 3.29 31.15
RESETOXETOX 0 3.34 31.19
North Azerbaijani azj_Latn Low Baseline 488 12.27 44.1
RESETOXETOX 351 12.26 44.08
Bambara bam_Latn Low Baseline 1151 6.27 30.64
RESETOXET0OX 304 6.31 30.59
Balinese ban_Latn  Low Baseline 293 14.76 47.12
RESETOXETOX 100 14.73 47.09
Bemba bem_Latn Low Baseline 1191 8.69 39.25
RESETOXET0X 221 8.62*  38.98%*
Banjar (Latin script) bjn_Latn  Low Baseline 51 17.12 49.57
RESETOXETO0X 12 16.96* 49.36*
Bosnian bos_Latn  High Baseline 482 26.91 56.93
RESETOXETOX 301  26.84*  56.85%
Buginese bug_Latn  Low Baseline 82 6.03 35.93
RESETOXETOX 31 5.99 35.84
Catalan cat_Latn High Baseline 1673 37.85 62.93
RESETOXEgT0X 220 37.94 62.96
Cebuano ceb_Latn Low Baseline 29 29.04 57.33
RESETOXETOX 3 29.03 57.32
Czech ces_Latn  High Baseline 189 27.65 55.54
RESETOXETOX 71 27.63 55.49
Chokwe cjk_Latn Low Baseline 674 2.06 23.44
RESETOXET0X 318 2.09 2343
Crimean Tatar crh_Latn Low Baseline 348 12.85 45.17
RESETOXET0X 183 1271  4491*
Welsh cym_Latn Low Baseline 0 33.13 58.6
RESETOXETOX 0 33.16 58.62
Danish dan_Latn  High Baseline 221 40.78 65.41
RESETOXETOX 85 40.5%  65.19*
German deu_Latn  High Baseline 191 3491 62.2
RESETOXgT0X 71 34.89 62.13
Southwestern Dinka dik_Latn Low Baseline 25725 3.51 21.13
RESETOXETOX 11737 3.51 21.06
Dyula dyu_Latn Low Baseline 2009 1.65 19.19
RESETOXETO0X 1263 1.63 19.18
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Esperanto epo_Latn  Low Baseline 0 32.96 61.85
RESETOXETOX 0 32.86 61.84
Estonian est_Latn High Baseline 1027 19.49 53.27
RESETOXETOX 622 19.45 53.23
Basque eus_Latn  High Baseline 4377 14.77 52.97
RESETOXETOX 745 14.68 52.8%
Ewe ewe_Latn Low Baseline 7012 11.76 38.0
RESETOXET0OX 2820 11.31* 37.47*
Faroese fao_Latn Low Baseline 377 20.57 4591
RESETOXEgT0X 142 20.58 45.87
Fijian fij_Latn Low Baseline 3754 17.68 46.24
RESETOXgT0X 1633 17.59 46.13
Finnish fin_Latn High Baseline 1935 18.93 53.08
RESETOXETOX 1348 18.93 53.05
Fon fon_Latn  Low Baseline 8580 2.49 18.68
RESETOXET0X 4195 2.48 18.85
Friulian fur_Latn Low Baseline 409 28.01 54.7
RESETOXETOX 115  27.52* 54.31%*
Nigerian Fulfulde fuv_Latn Low Baseline 347 1.95 20.38
RESETOXETO0X 232 1.96 20.39
West Central Oromo gaz_Latn  Low Baseline 10 3.52 37.28
RESETOXETOX 2 3.52 37.28
Scottish Gaelic gla_Latn Low Baseline 1416 15.42 48.04
RESETOXgT0X 462 154 48.01
Irish gle Latn  Low Baseline 732 23.29 50.04
RESETOXETOX 325  23.14*%  49.94%
Galician glg Latn  Low Baseline 420 32.09 59.24
RESETOXETOX 50 32.03 59.24
Guarani g Latn  Low Baseline 1135 8.98 37.66
RESETOXETO0X 489 8.98 37.66
Haitian Creole hat_Latn Low Baseline 291 23.22 52.22
RESETOXETO0X 68 23.19 52.2
Hausa hau_Latn Low Baseline 406 23.44 51.53
RESETOXETOX 34 23.45 51.54
Croatian hrv_Latn  High Baseline 577 25.0 55.16
RESETOXETOX 388 2494  55.08*
Ilocano ilo_Latn Low Baseline 1446 2341 53.18
RESETOXEgT0X 709 23.07* 53.0
Indonesian ind Latn  High Baseline 14220 43.25 68.46
RESETOXETOX 12338 43.01* 68.16*
Icelandic isl_Latn High Baseline 13 19.8 46.74
RESETOXETOX 7 19.81 46.73
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Javanese jav_Latn Low Baseline 524 26.28 55.41
RESETOXgrox 179 26.22*  55.35%
Kabyle kab_Latn  Low Baseline 4 6.41 29.28
RESETOXET0X 0 6.33 29.26
Jingpho kac_Latn Low Baseline 55 11.17 37.79
RESETOXETOX 15 11.18 37.8
Kamba kam_Latn Low Baseline 0 4.46 29.44
RESETOXETOX 0 4.43 29.41
Kabiye kbp_Latn  Low Baseline 0 5.64 25.6
RESETOXETOX 0 5.64% 25.6%*
Kabuverdianu kea_Latn Low Baseline 57 17.54 46.42
RESETOXETOX 9 17.57 46.36
Kikuyu kik_Latn Low Baseline 538 10.58 37.56
RESETOXETOX 127 10.49*%  37.38%*
Kinyarwanda kin_Latn Low Baseline 1623 15.46 47.62
RESETOXETOX 549 155 47.48%*
Kimbundu kmb_Latn Low Baseline 901 2.96 28.54
RESETOXET0X 46 2.96 28.48
Northern Kurdish kmr_Latn  Low Baseline 0 10.21 39.03
RESETOXgrox 0 10.21* 39.03*
Central Kanuri (Latin script) knc_Latn Low Baseline 0 2.21 17.95
RESETOXETOX 0 2.2 17.94
Kikongo kon_Latn Low Baseline 2751 17.54 47.11
RESETOXETO0X 1903 17.54 47.1
Ligurian lij_Latn Low Baseline 3 15.5 45.46
RESETOXETOX 0 15.52 45.46
Limburgish lim_Latn Low Baseline 8 10.77 44.57
RESETOXETOX 0 10.7 44.5%
Lingala lin_Latn Low Baseline 340 17.65 49.62
RESETOXET0X 134 17.66 49.54
Lithuanian lit_Latn High Baseline 390 19.67 52.06
RESETOXET0X 224 19.67 52.05
Lombard Imo Latn Low Baseline 24 6.24 35.16
RESETOXgrox 2 6.24 35.1
Latgalian Itg_Latn Low Baseline 26 14.79 43.46
RESETOXETOX 3 14.81 43.5
Luxembourgish Itz_Latn Low Baseline 34 22.11 54.22
RESETOXEgT0X 6 22.1 54.2
Luba-Kasai lua_Latn Low Baseline 1234 6.31 37.64
RESETOXETOX 317 6.07*  37.42%
Ganda lug_Latn Low Baseline 246 7.26 39.31
RESETOXETOX 16 7.25 39.3
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Luo luo_Latn Low Baseline 23855 10.47 40.06
RESETOXET0X 16351 10.24*  39.84*
Mizo lus_Latn Low Baseline 2148 9.83 37.44
RESETOXET0X 662 9.7*%  37.23%
Standard Latvian lvs_Latn High Baseline 889 18.32 47.96
RESETOXETOX 113 18.25 47.88
Minangkabau (Latin script) min_Latn Low Baseline 20488 18.38 50.32
RESETOXETOX 14152  18.27* 50.24
Maltese mlt_Latn High Baseline 74 24.15 63.28
RESETOXETOX 22 24.14 63.25
Mossi mos_Latn  Low Baseline 820 3.48 22.57
RESETOXET0X 210 3.5 22.65
Maori mri_Latn  Low Baseline 163 19.27 45.13
RESETOXETOX 49  19.15% 45.1
Dutch nld_Latn High Baseline 74 25.23 56.24
RESETOXETOX 29 25.31 56.23
Norwegian Nynorsk nno_Latn  Low Baseline 54 25.04 54.61
RESETOXET0X 19 24.9%  54.48*
Norwegian Bokmal nob_Latn  Low Baseline 1489 30.72 59.2
RESETOXETOX 1222 30.64* 59.15
Northern Sotho nso_Latn  Low Baseline 3 22.11 51.28
RESETOXET0X 1 22.11 51.29
Nuer nus_Latn  Low Baseline 51 5.41 27.52
RESETOXET0X 5 5.41 27.54
Nyanja nya_Latn  Low Baseline 939 13.7 48.73
RESETOXETOX 585 13.68 48.73
Occitan oci_Latn Low Baseline 39 33.17 60.78
RESETOXETOX 1 32.65% 60.31%*
Papiamento pap_Latn  Low Baseline 4019 25.56 52.82
RESETOXETOX 2679 25.15%  52.55%
Plateau Malagasy plt_Latn Low Baseline 270 16.03 52.11
RESETOXET0X 109 15.98 52.02
Polish pol.Latn  High Baseline 179 18.41 48.58
RESETOXETOX 77 18.39 48.55
Ayacucho Quechua quy_Latn  Low Baseline 0 2.09 27.18
RESETOXET0X 0 2.12 27.15
Romanian ron_Latn  High Baseline 221 34.04 60.69
RESETOXEgT0X 68 33.81*% 60.47*
Rundi run_Latn Low Baseline 377 11.47 43.36
RESETOXETOX 121 11.49 43.27*
Sango sag Latn  Low Baseline 5 9.06 36.0
RESETOXETOX 1 8.95 35.87
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Sicilian scn_Latn Low Baseline 14268 5.92 37.26
RESETOXETOX 9330 5.81 37.21
Slovak slk_Latn High Baseline 23 28.56 56.4
RESETOXETOX 14 28.47 56.35
Slovenian slv_Latn High Baseline 575 25.01 53.43
RESETOXETOX 425 2499  53.39%
Samoan smo_Latn Low Baseline 2854 25.56 49.67
RESETOXETOX 1190 25.32%  49.37*
Shona sna_Latn Low Baseline 103 12.9 48.23
RESETOXETOX 93 12.87 48.17
Somali som_Latn Low Baseline 99 11.54 45.77
RESETOXgT0X 58 11.5 45.72
Southern Sotho sot_Latn High Baseline 18571 18.37 48.49
RESETOXETO0X 14650 18.35 48.49
Sardinian srd_Latn Low Baseline 24 25.56 54.71
RESETOXETOX 9 2539*% 54.58*
Swati ssw_Latn  Low Baseline 0 991 47.75
RESETOXETOX 0 9.82 47.66
Sundanese sun_Latn Low Baseline 184 18.37 50.62
RESETOXETOX 64 18.25*  50.53*
Swedish swe_Latn  High Baseline 333 39.62 65.13
RESETOXETOX 88 39.8%* 65.19
Swahili swh_Latn  High Baseline 569 32.08 60.75
RESETOXgT0X 229 32.02 60.61%*
Silesian szl_Latn Low Baseline 166 16.98 47.49
RESETOXETOX 68 16.97 47.45
Tagalog tgl Latn High Baseline 446 31.37 58.08
RESETOXETOX 299 31.27 58.07
Tok Pisin tpi_Latn Low Baseline 3590 18.33 42.94
RESETOXET0X 1419  17.09* 41.88*
Tswana tsn_Latn High Baseline 11558 21.04 49.18
RESETOXETO0X 4475 20.92  49.08*
Tsonga tso_Latn Low Baseline 2885 21.57 52.12
RESETOXETOX 2117 21.56 52.1
Turkmen tuk _Latn Low Baseline 556 10.69 40.33
RESETOXET0X 377 10.52 40.32
Tumbuka tum_Latn  Low Baseline 1179 9.96 37.71
RESETOXgT0X 831 9.89* 37.63
Twi twi_Latn Low Baseline 29683 11.2 37.27
RESETOXETO0X 7573  10.01*  35.82%
Umbundu umb_Latn Low Baseline 35 2.34 30.07
RESETOXETOX 22 2.35 30.1
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Northern Uzbek uzn_Latn  High Baseline 0 15.48 52.79

RESETOXETOX 0 15.51 52.61%

Venetian vec_Latn  Low Baseline 1177 14.63 48.99

RESETOXETOX 895  14.43% 48.91

Vietnamese vie_Latn High Baseline 2370 38.46 56.47

RESETOXETOX 1085 38.48 56.48

Waray war_Latn  Low Baseline 3734 28.59 56.11

RESETOXETOX 2052 28.59 56.1

Wolof wol_Latn  Low Baseline 1 4.99 24.67

RESETOXEgT0oXx 0 5.0 24.65

Xhosa xho_Latn  High Baseline 0 13.67 53.03

RESETOXETOX 0 13.67 53.02

Yoruba yor_Latn  Low Baseline 18735 4.29 24.08

RESETOXETOX 16099 4.26 24.04

Standard Malay zsm_Latn  High Baseline 797 37.57 65.74

RESETOXETOX 508 37.53 65.71

Zulu zul_Latn High Baseline 34 17.24 56.66

RESETOXETOX 6 17.23 56.65

Central Atlas Tamazight tzm_Tfng Low Baseline 13 5.37 28.21

RESETOXETOX 4 5.23*%  27.83%

Dzongkha dzo_Tibt  Low Baseline 0 0.52 39.24

RESETOXETOX 0 0.52*%  39.24%*
acm_Arab glg Latn ewe_Latn
uig Arab Ivs Latn swh Latn
prs_Arab cat_Latn plt_Latn
pbt_Arab kea_Latn szl_Latn
kas_Arab afr_Latn smo_Latn
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azb_Arab ltz_Latn grn_Latn
pes Arab zul Latn fij Latn
bjn_Arab aka_Latn gle_Latn
arb_Arab bem_Latn dik_Latn
ars_Arab gaz_Latn vie_Latn
acq_Arab sag_Latn cjk_Latn
arz_Arab tur_Latn fon_Latn
urd_Arab hat_Latn ilo_Latn
snd_Arab bjn_Latn crh_Latn
apc_Arab kik_Latn isl_Latn
ajp_Arab ita_Latn war_Latn
ary_Arab fra_Latn lit_Latn
hye_Armn twi_Latn som_Latn
khk Cyrl mos Latn est_Latn
kaz_Cyrl lua Latn slk_Latn
rus_Cyrl bam_Latn por_Latn
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Figure 7: Percentage of added toxicity reduction (Vrgserox) when comparing the RESETOX and baseline outputs in terms of
ETOX for 164 languages with added toxicity.
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Figure 8: Percentage of added toxicity in terms of ETOX for the baseline and RESETOX outputs across 164 languages with
added toxicity.
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Abstract

An all-too-present bottleneck for text clas-
sification model development is the need to
annotate training data and this need is mul-
tiplied for multilingual classifiers. Fortu-
nately, contemporary machine translation
models are both easily accessible and have
dependable translation quality, making it
possible to translate labeled training data
from one language into another. Here, we
explore the effects of using machine trans-
lation to fine-tune a multilingual model for
a classification task across multiple lan-
guages. We also investigate the benefits
of using a novel technique, originally pro-
posed in the field of image captioning, to
account for potential negative effects of
tuning models on translated data. We show
that translated data are of sufficient quality
to tune multilingual classifiers and that this
novel loss technique is able to offer some
improvement over models tuned without it.

1 Introduction

One of the most common uses of machine learn-
ing for natural language processing (NLP) is the
classification of text into one of multiple mutually-
inclusive or mutually-exclusive labels. Recently,
generative LLMs, such as PaLM (Chung et al.,
2022) and ChatGPT (Ouyang et al., 2022) have
shown exciting and impressive capabilities to do
zero- or few-shot prompting, classify text given
only a few examples for the task across a variety
of languages. Nevertheless, it is still the case that

© 2024 The authors. This article is licensed under a Creative
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the highest performing and most efficient means
to classify text is the use of a bespoke classifier
trained with hundreds or thousands labeled exam-
ples (Pires et al., 2019), particularly when the task
requires a level of human-like subjectivity or gen-
eral reasoning ability (Kocon et al., 2023, see dis-
cussion). To this end, finding or creating a corpus
of labeled examples is a necessary step in the cre-
ation of any classifier.

For high-resource languages like English, which
have many existing labeled corpora available and
large populations of annotators on crowd-sourced
workers such as Amazon Mechanical Turk, the
challenge of creating or finding training and eval-
uation data can be costly, but not prohibitively so.
Yet, for lower-resourced languages which lack ex-
isting annotated corpora and have smaller or even
non-existent populations on these large annotation
platforms, acquiring the required training data can
prove to be much more difficult. Moreover, if the
model is intended to be able to perform the same
classification across multiple languages, the time
and effort required to annotate training data be-
comes multiplicative. Fortunately, classification is
not alone in the applications of machine learning in
NLP. Machine translation (MT) has seen major im-
provements in recent years (Stahlberg, 2020), ac-
celerated by the adoption of the transformer archi-
tecture (Vaswani et al., 2017).

To date, several options for high quality machine
translation currently exist, between API services
and open-source models. MT API services, such
as Google translate, have become nearly ubiqui-
tous, provide high quality translations, while still
being relatively inexpensive. In fact, in one exper-
iment, translating data using Google translate into
English and using existing English-trained classi-
fier models outperformed certain models trained
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on the original language directly (Araujo et al.,
2016). In addition to MT API services, several
open-source translation models are easily avail-
able, such as the multilingual M2M 100 model (Fan
et al., 2020), NLLB200 model (Team et al., 2022)
or the over 1400 models trained by the Univer-
sity of Helsinki (Tiedemann and Thottingal, 2020),
with many of these models have performance that
approaches or exceeds that of MT APIs (Stahlberg,
2020).

With this in mind, it may be the case that trans-
lating an existing, labeled dataset with one of the
aforementioned MT options is a feasible alterna-
tive to creating a novel dataset directly in that lan-
guage. This has several benefits. Firstly, it avoids
the problem of existing corpora or annotation op-
tions not existing for the language in question.
Secondly, it minimizes the data needed for multi-
lingual models and allows annotations for one lan-
guage to serve another. Here, we ask if it is possi-
ble to use MT to train a multilingual model, given
only original, annotated data for a single language.

Of course, the potential benefits of using MT to
train a multilingual model are still affected by the
old machine learning adage: garbage in, garbage
out. Even the best translations, either human or
machine, will lose some of the information of the
original language, which will inevitably lead to
dropped performance for a model trained on the
translated examples. Fortunately, the problem of
training models using semantically similar but im-
perfect pairs of data is not unique to the task at
hand and there is a growing body of research which
may provide some benefit. In particular, image
captioning is a task to generate the ideal natural
language text caption for an image and these cap-
tioning models must learn to represent semanti-
cally related data from very different modalities
similarly, i.e., text and images (Li et al., 2021). In
this way, image captioning is somewhat analogous
to the task of training on translated data, where we
want to have semantically identical text from dif-
ferent languages predicted to have the same labels.
As aresult, we ask in addition whether some of the
model training techniques used in image caption-
ing models can lead to improved performance for
multilingual models trained using MT data.

2 Related Work

This work is by no means the first to suggest the
usage of machine translation to create or augment
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datasets for lower resourced languages. Wei and
Pal (2010) and Pan et al. (2011) augmented Chi-
nese language corpora with annotated data trans-
lated from English to improve the performance of
a Chinese-language sentiment analysis model. On
the other hand, Barriere and Balahur (2020) and
Ghafoor et al. (2021) used existing API translation
services to translate annotated data from English
into lower-resourced languages and trained classi-
fiers solely on these translated data, finding that
classifiers trained on translated data were fairly ac-
curate but did see drops in performance, likely due
to the effects of imperfect translations of the train-
ing data.

It should be noted that training a model from
scratch is not the only means to create an ac-
curate classifier, particularly for lower-resourced
languages. Large multilingual transformer mod-
els such as M-BERT (Devlin et al., 2018), XLM-
ROBERTA (Conneau et al., 2019) or GPT-3
(Brown et al., 2020) have been shown to have
the ability to generalize from one language to the
other, i.e., train in one language and improve test
performance in another language, (Pires et al.,
2019), but benefits of this vary on the languages
in question, with languages that share closer ge-
nealogical origin or structural similarities benefit-
ing more from inter-language transfer. Regardless,
training a model with examples of a particular lan-
guage dependably yields the best classifier for new
data in that language.

Nevertheless, to date there has been no investi-
gation of how fine-tuning large multilingual trans-
former models on translated data affects final per-
formance compared to simple interlanguage trans-
fer. Moreover, previous work to train models using
translated data employed a naive approach, treat-
ing translated data as if it were no different than
original, untranslated data which annotated itself.
In this work, we investigate both how multilin-
gual transformer models trained on translated data
perform compared to interlanguage transfer and
explore a means to mitigate imperfect translation
quality when creating these training datasets.

3 Image captioning and Image-Text
Contrastive Loss

Image-text Contrastive (ITC) loss is a technique
used when training multimodal models to caption
images with natural language descriptions (Li et
al., 2021). For example, BLIP (Li et al., 2022)



is a image-captioning model that was trained with
a mix of human- and artificially-annotated images
where ITC loss was integral to the models abil-
ity to learn from noisy, artificially-annotated data.
ITC loss, then, has been shown to mitigate nega-
tive effects of both noise and different modalities
for multimodal models.

At an intuitional level, these captioning mod-
els decompose text and images into a shared em-
bedding space and ITC loss seeks to penalize
cases where related image-text pairs are dissim-
ilar in this shared embedding space. In other
words, ITC looks seeks to bring semantically re-
lated items from disparate modalities closer in a
shared embedded space and has empirically im-
proved image-captioning models, with little im-
pact on training time or resources.

Training multilingual classification models with
translated data bears a similarity to captioning,
though rather than have semantically related ex-
amples from different modalities, there are seman-
tically parallel data in different languages. That
being the case, we will be a slightly modified form
of ITC loss, namely original-translated contrastive
(OTC) loss, to enforce similarity within a batch
between data from the original language and its
translated counterpart. Like ITC loss, OTC loss
penalizes a transformer model for dissimilar em-
bedding representations for translated pairs. One
way to think of it is that this loss encourages the
model to embed sentences with the same meaning
identically, regardless of language.

In detail, we implement OTC loss as follows.
We begin by deriving a probability of each origi-
nal/translated pairing in a training minibatch, p°%
and p'?°, that is, which original examples pairs
with which translated example and vice versa.

exp(s(O,Ty)/T)

02t __
o Y Merp(s(0,Ty,)/T) M
o _emGOn/D

Pm = SMeap(s(T, Op)/7)

Here, s(7,0) is a similarity function between
the original, untranslated data and the translated
examples in a minibatch. We compute s(7,O)
by first extracting and normalizing the embedding
for the initial [CLS] token after the final attention
head of the encoder stack in M-BERT, comput-
ing a pairwise dot product for all possible pairs
of original and translated data and dividing by 7,
which is a learnable parameter. We then apply the
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softmax function as a way to represent the like-
lihood of each original/translated match. Ideally,
each correct original/translated pair will have the
most similar embeddings, resulting in a value close
to 1 after softmax. As a final step, we compute
the cross-entropy between the result of the previ-
ous step and a target vector which encodes the cor-
rect original/translated pairs, weighting this by a
hyperparameter, c,.. Following BLIP (Li et al.,
2022), we set oot = .4 for all runs.

1
Lote = Qote * §E(O,T) [H(yOQt(O)a p02t(0)+
H(y?(T),p"™(T)] (3)
4 Experiments

4.1 Data

For these experiments, we use a multilingual
dataset of Amazon product reviews across 6 lan-
guages: English, Spanish, French, German, Chi-
nese and Japanese (Keung et al., 2020). This
dataset is comprised of over 1 million total ex-
amples, split into a train and test partition. The
reviews are equally distributed across the six lan-
guages, as well as the total stars given to the re-
viewed product (1-5) for both the train and test par-
tition, i.e., each number of stars comprises 20% of
the examples for that language. This dataset is par-
ticularly useful due to its size, number of available
languages and presence of an established training
and test data split.

We began by translating each review from the
training partition of the original dataset into each
of the other respective languages and assigned the
same star value to the review (see example 1), i.e.,
if a review was originally in English and had star
star, when translating it into French it would also
be labeled with one star. We did this translation
once before carrying out the rest of the experiment
to ensure each classifier would be trained on the
same set of translations. To translate, we used
a single multilingual translation model, M2M100
(Fan et al., 2020). We chose to use a single mul-
tilingual translation model in order to mitigate any
potential differences from translation quality com-
ing from different machine translation architec-
tures.

4.2 Experiment design

To investigate any potential improvement in classi-
fier accuracy with the use OTC loss, we fine-tuned



id | translated | language | text stars
1 0 en My daughter really likes the backpack and ... 5

1 1 es Mi hija realmente le gusta el bolsillo y ... 5
2 0 en This product is BS, I washed my face with hot water ...

2 1 fr Ce produit est BS, je me suis lavé le visage a I’eau chaude ...

Figure 1: Example original and translated data. Each unique review (id) in the original dataset was translated to the other
languages and assigned the same star value. Texts truncated here for formatting.

pretrained transformer models on datasets that in-
cluded original, untranslated data for a single lan-
guage! and only translated data for all others in the
six language set. As an example, in one training
run, the model would be tuned on the original En-
glish training data and only translated data for all
other languages, which were translated from the
set of the original English data. We did this for
all six languages in the original set to ensure any
results were not restricted to one language in the
dataset. Though the exact training examples var-
ied for each model, we tested each on the original
testing split of the dataset, which was solely com-
prised of original data, i.e., non-translated, for the
six languages.

In each case, we tuned a multilingual DISTIL-
BERT model (Sanh et al., 2019), a distilled ver-
sion of the original multilingual M-BERT (Devlin
et al., 2018), to predict the number of stars on a re-
view as a categorical classification problem, using
categorical cross-entropy loss and varying between
using OTC loss as an additional loss parameter be-
tween runs. We chose to use a distilled variant of
BERT due to the distilled variants increased speed
of training, while still maintaining 97% of overall
language understanding of the original.

Because of the mechanics of OTC loss, each
translated datum must have an original match in
the minibatch and each original must have at least
one translated variant. As such, we constructed
minibatches during training such that half the sam-
ples were always original, untranslated data and
the other half were a randomly selected translated
example for each original datum. For each orig-
inal example, we randomly selected a translated
example from the other languages, meaning that
the model saw an equal number of original and

"We restricted the experimental conditions to only including
a single language’s original data, rather than use the full set
of 6! = 720 possible permutations of language combinations
for the sake of efficiency and resources.
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translated examples during tuning overall, though
it saw far fewer individual examples of each trans-
lated language, i.e., roughly % For simplicity, we
restricted our tests to a 1:1 original:translated ratio
and we used the same batch sampling method for
runs without OTC loss, to make results more easily
comparable.

For each tuning run, we used a batch size of 32
(16 original and 16 translated examples per batch)?
and used the AdamW (Loshchilov and Hutter,
2017) optimizer with a linear warm-up of 500 up-
dates with a learning rate of 2e-5. All training was
done on G5.2XLARGE AWS instances which con-
tain NVIDIA A10G GPUs. We tuned 3 separate
tuning runs for each set of hyperparameters and re-
port their mean values in the next section.

5 Results

In these experiments, we asked two simple ques-
tions: 1) how feasible is it to tune a multilingual
transformer model on translated data and 2) does
the inclusion of OTC loss improve model perfor-
mance for languages where only translated train-
ing data was used.

In answer to the first, for each of the six
languages in the original dataset, models fine-
tuned with translated data showed higher F1-micro
scores’ on the held-out test set, compared to mod-
els trained with only original data for a single
language (see Table 1). As was expected from
Pires et al. (2019), even if a model was never
exposed to data for a language, original or trans-
lated, the final model did have Fl-micro greater
than chance for that language (which would be
20% for a balanced, 5-label problem), indicating

2For baseline conditions where there was no translated data,
mini-batching happened as normal with 32 examples original,
untranslated data per batch.

*Fl-micro is an example-weighted version of the Fl-score,
which is the harmonic mean or precision and recall. For more
details on F1-score, see (Jurafsky and Martin, 2008).



Language F1-micro
No data | Translated | Original
EN 0.407 0.481 0.554
FR 0.379 0.468 0.544
DE 0.359 0.465 0.581
ES 0.376 0.474 0.55
JA 0.307 0.396 0.543
ZH 0.352 0.372 0.458

Table 1: Fl-micro for models trained with no samples for
the specified language (No data), with only translated sam-
ples (Translated) and with the original training data for that
language (Original). All languages saw a sizeable boost to
performance over their respective baselines when using trans-
lated data (.02-.11) but all languages did perform markedly
better when given actual data for each language.

there was interlingual knowledge transfer happen-
ing within the model during training. Moreover, it
appears that there was more transfer between re-
lated, similar languages, compared to more dis-
similar languages; models trained with data for a
European language showed higher performance on
other European languages, compared to Japanese
or Chinese. Nevertheless, for all languages, the use
of translated data did show a noticeable improve-
ment (.02-.11), though for each language, models
trained with only translated data did underperform
models trained with the full set of origina, untrans-
lated training examples for that language (.07-.12).

That said, it is clear that the use of translated
training data does improve model performance,
even if the trained model only sees translated ex-
amples for that language. It should also be noted
that due to the batching and sampling strategy used
here, models trained with translated data saw far
fewer examples of each language where they only
saw translated data. That is, because each origi-
nal review was paired with a single translated ex-
ample out of five possible translated, these models
were exposed to roughly one fifth of the data for
translated languages and still saw a sizable boost
in performance.

Moving on to the effect of OTC loss, Table
3 shows the mean Fl-micro per language in the
testing set, for models fine-tuned using original
data for the specified language and translations
for all other languages. For all languages, mod-
els trained using OTC loss saw an improvement
over models trained without for all languages ex-
cept Chinese, which showed a mixed set of negligi-
ble differences or lowered performance. However,
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Language F1-micro

No OTC | OTC
EN 0.479 | 0.483
FR 0.464 | 0.472
DE 0.463 | 0.467
ES 0.472 | 0.476
JA 0.393 | 0.399
ZH 0.368 | 0.376

Table 2: Comparison on final performance per language for
models that only included translated examples for the spec-
ified language. Though the gain was less than .1, each lan-
guage consistently performed better when trained with OTC
loss.

these values include runs where the specific lan-
guage was included as original, untranslated data.
When averaging across all runs where a language
in the testing set was only represented by trans-
lated data, OTC loss shows an improvement over
models trained without it for all languages. Table
2 shows the mean F1-micro for all models trained
where the specified language was not the original
language.

To ensure that the results here were in fact sta-
tistically significant, we fit a linear mixed-effect
model to predict final model F1-micro for a lan-
guage, given the hyperparameters of a particular
tuning run. Mixed-effect models are able to accu-
rately evaluate the contribution of different fixed-
effect independent variables, e.g., whether OTC
was used when training a particular model, on de-
pendent variables, e.g., the final accuracy of the
trained model, all the while being robust to ex-
pected random variance between trials, e.g., be-
cause of random initialization and batching, some
deep learning models score higher than others
with identical hyperparameters (see Baayen et al.
(2008), Jaeger (2008) for more).

This statistical model was fit to predict per-
language test f1-micro, given a random effect of
each model run and three fixed effects: i) the tested
language, ii) the identity of the single original lan-
guage and iii) whether OTC loss was added. OTC
was found to have a significant, positive effect
(COEF=0.036, STD.ERROR=0.017, for all model
details see 2), indicating that even after taking into
consideration differences between languages and
random variance for each multilingual model, the
inclusion of OTC loss did yield an improved final
model F1-micro.



Orig. Training Language | OTC | EN | FR | DE | ES | 1A | zH
EN No OTC | 0.548 | 0.488 | 0.493 | 0.489 | 0.425 | 0.423
OTC 0.553 | 0.507 | 0.522 | 0.512 | 0.434 | 0.422
FR No OTC | 0.504 | 0.539 | 0.504 | 0.493 | 0.424 | 0.426
OTC 0.512 | 0.539 | 0.517 | 0.511 | 0.428 | 0.412
DE No OTC | 0.514 | 0.495 | 0.577 | 0.495 | 0.436 | 0.427
OTC 0.524 | 0.506 | 0.581 | 0.506 | 0.449 | 0.425
ES No OTC | 0.506 | 0.497 | 0.500 | 0.544 | 0.433 | 0.419
OTC 0.523 | 0.510 | 0.518 | 0.548 | 0.441 | 0413
JA No OTC | 0.470 | 0.460 | 0.477 | 0.468 | 0.526 | 0.436
OTC 0.493 | 0.474 | 0.499 | 0.487 | 0.522 | 0.424
ZH No OTC | 0.486 | 0.439 | 0.441 | 0.444 | 0.398 | 0.482
OTC 0.488 | 0.467 | 0.473 | 0.472 | 0.421 | 0.503

Table 3: Fl-micro results on untranslated test data. Each row shows the per-language performance for models trained with
original data for the specified language and translated data for all other languages, using OTC loss and without. Each cell shows
the mean of 3 runs per condition. Bolded values show a difference of .03 or greater.

6 Discussion and future directions

We investigated the feasibility of using translated
text to fine-tune a multilingual transformer model,
as well as any potential gains by utilizing a novel
application of deep learning technique to improve
performance. We found that models trained us-
ing only translated data for a language do show
a noticeable improvement over baselines, though
as expected, there was still a performance drop
from using original, untranslated data for that lan-
guage. We also found that slight further gains can
be achieved by the use of OTC loss, suggesting that
training the model in such a way where it is sensi-
tive to potential data issues improves its ability to
generalize.

Granted, this is a very open problem and results
of using translated data to tune a multilingual clas-
sifier will vary highly depending on the quality of
MT model used, architecture of the classifier be-
ing tuned and the type of classification being mod-
eled. Nevertheless, the results here are exciting for
multiple reasons. Firstly, as suggested by previ-
ous works (Shalunts et al., 2016, as an example),
MT is useful tool for language-specific dataset cre-
ation when creating a dataset for that language di-
rectly may prove difficult. In this case, we showed
that M-BERT models tuned on translated exam-
ples showed large gains over simple multilingual
transfer during training. This is particularly inter-
esting given that for each translated language, the
model was only given a fraction of samples com-
pared to the original language due to the 1:1 ratio
of original and translated data. A future direction
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for this work may be to adjust this ratio or the num-
ber of languages in the dataset to investigate how
this affects model training. Secondly, the use of
OTC loss was shown to lead to a small, but robust
boost to performance. This suggests that methods
of mitigating the natural effects of translation have
a potential to bridge the gap, so to speak, between
models trained on translated data and on datasets in
the target language directly. Particularly relevant,
Chinese, which is linguistically dissimilar from the
majority of languages in the set used here, showed
a mixed ability to benefit from training with other
languages, but a clearer improvement using OTC
loss. This may suggest that OTC loss is able to mit-
igate structural differences between languages and
a future direction for this may be to explore exactly
how OTC loss affects individual examples and how
other noise-reduction techniques may lead to fur-
ther gains in model performance.

Putting this together, this is an indication that
MT-augmented datasets stand as a good first step
for developing multilingual classification models.
Given that MT can quickly and efficiently expand
an annotated dataset from one language into an-
other and that translated dataset is of sufficient
quality to improve over basic interlingual trans-
fer, this technique has great potential to expanding
classification tasks to new languages quickly. In
addition, OTC loss may be able to slightly but sig-
nificantly increase the quality of these models with
no additional data. All in all, we are confident that
the use of MT augmentation is an exciting and in-
teresting topic for future exploration.
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Mixed Linear Model Regression Results

Model: MixedLM Dependent Variable: test_acc
No. Observations: 108 Method: REML
No. Groups: 18 Scale: 0.0038
Min. group size: 6 Log-Likelihood: 111.7634
Max. group size: 6 Converged: Yes
Mean group size: 6.0

Coef. Std.Err. Z P>|z| [0.025 0.975]
Intercept 0.465 0.024 19.128 0.000 0.418 0.513
otc[T.True] 0.036 0.017 2.105 0.035 0.002 0.069
original_lang[T.en] -0.020 0.028 -0.714 0.475 -0.074 0.035
original_lang[T.es] -0.012 0.028 -0.432 0.666 -0.066 0.042
original_lang[T.fr] -0.015 0.028 -0.555 0.579 -0.070 0.039
original_lang[T. jal -0.030 0.028 -1.093 0.274 -0.085 0.024
original_lang[T.zh] -0.050 0.028 -1.801 0.072 -0.104 0.004
test_lang[T.en] 0.016 0.020 0.762 0.446 -0.025 0.056
test_lang[T.es] 0.003 0.020 0.130 0.897 -0.037 0.043
test_lang[T.fr] -0.000 0.020 -0.005 0.996 -0.040 0.040
test_lang[T. ja] -0.061 0.020 -2.972 0.003 -0.101 -0.021
test_lang[T.zh] -0.068 0.020 -3.336 0.001 -0.108 -0.028
Group Var 0.001 0.009

Figure 2: Full model details for MLE model trained to predict F1-micro per laguage. OTC has a positive contribution to an
increase F1-micro score, even when controlling for variance between languages and model runs.
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Abstract

In Neural Machine Translation, models
are often trained with teacher forcing
and suffer from exposure bias due to the
discrepancy between training and infer-
ence. Current token-level solutions, such
as scheduled sampling, aim to maximize
the model’s capability to recover from er-
rors. Their loss functions have a side ef-
fect: a sequence with errors may have a
larger probability than the ground truth.
The consequence is that the generated
sequences may deviate from the ground
truth. This side effect is verified in our ex-
periments. To address this issue, we pro-
pose using token-level contrastive learn-
ing to coordinate three training objec-
tives: the usual MLE objective, an ob-
jective for recovery from errors, and a
new objective to explicitly constrain the
recovery in a scope that does not impact
the ground truth. Our empirical analysis
shows that this method effectively achieves
these objectives in training and reduces
the frequency with which the third ob-
jective is violated. Experiments on three
language pairs (German-English, Russian-
English, and English-Russian) show that
our method outperforms the vanilla Trans-
former and other methods addressing the
exposure bias.

1 Introduction
Like many other text generation tasks, models for

Neural Machine Translation (NMT) (Bahdanau et

© 2024 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
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al., 2014) are usually trained with teacher forcing.
During training, ground truth tokens are used as
target prefixes to the decoder, and the model learns
to predict the next token conditioned on the ground
truth. There is a discrepancy between this train-
ing method and inference. In inference, the ground
truth tokens are not available. The target prefixes
to the decoder are tokens previously generated by
the model, which may include some errors. This
discrepancy is referred to as exposure bias (Bengio
et al., 2015; Ranzato et al., 2016). The main con-
cern about exposure bias is error accumulation. If
one error happens at one step, it is incorporated
into the future steps and leads to more errors. Al-
though there are still some doubts about whether
exposure bias is a big issue for text generation (He
et al., 2021), more research shows that this issue
matters for NMT (Wu et al., 2018; Wang and Sen-
nrich, 2020; Korakakis and Vlachos, 2022).

There are two approaches to mitigate the expo-
sure bias, working at the token and sequence lev-
els, respectively.

The token-level solutions, for example, sched-
uled sampling (Bengio et al., 2015; Mihaylova and
Martins, 2019; Liu et al., 2021), usually use the to-
kens sampled from the model to replace the ground
truth in training. The objective is to simulate the
possible errors in inference and recover from these
errors to reduce the error accumulation.

The sequence-level solutions directly maximize
the total quality of the generated sequences with a
sequence-level loss function (Ranzato et al., 2016;
Shen et al., 2016; Edunov et al., 2018). There
is still debate whether these solutions are stable
and effective (Choshen et al., 2019; Kiegeland and
Kreutzer, 2021).

This paper focuses on mitigating the exposure
bias with token-level objectives.

Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1), pages 68—79
June 24-27, 2024 ©2024 European Association for Machine Translation



The loss functions used in most token-level so-
lutions have a side effect. They aim to increase
the model’s capability to recover from errors by
maximizing the probability of the next token con-
ditioned on some error tokens. Consequently, a
sequence with errors may have a larger probabil-
ity than the ground truth, and the generated se-
quences may deviate from the ground truth. This
side effect is verified in our experiments. We dis-
cover a missing objective behind this side effect
that can explicitly constrain the recovery in a scope
that does not impact the ground truth. We propose
to use token-level contrastive learning and coordi-
nate three training objectives: the usual Maximum
Likelihood Estimation (MLE) objective, an objec-
tive for recovery from errors, and a new objective
constraining the recovery. Our empirical analy-
sis shows that this method effectively meets three
objectives in training. Particularly our method
reduces the frequency that the third objective is
violated. We conduct experiments on German-
English (De-En), Russian-English (Ru—En), and
English-Russian (En—Ru). Results show that our
method outperforms the vanilla Transformer and
other methods addressing the exposure bias.

2 Related Work

2.1 Exposure Bias and Methods to Migitate It

The existence of exposure bias is well recognized
(Bengio et al., 2015; Ranzato et al., 2016), but
its impact is still under debate. He et al. (2021)
find that the distortion from exposure bias is lim-
ited in open-ended generation tasks. They hypoth-
esize that the self-recovery ability of the language
model is countering that distortion. In NMT, Wu et
al. (2018) and Korakakis and Vlachos (2022) prove
the error accumulation from exposure bias using
prefix switching. They use different types of pre-
fixes on the target side and measure the difference
in the quality of the predictions. Typical prefixes
include ground truth, predictions from the system,
and random tokens. Wang and Sennrich (2020)
provide indirect evidence for exposure bias in
NMT. They train models with Minimum Risk
Training (MRT), which has a sequence-level ob-
jective and inherently avoids exposure bias. The
better performance of MRT than MLE justifies that
exposure bias is harmful. Besides NMT, Chiang
and Chen (2021) and Arora et al. (2022) quantify
exposure bias in open-ended text generation tasks
such as text completion.
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Two categories of approaches have been pro-
posed to mitigate exposure bias.

The token-level approach usually uses the to-
kens sampled from the model to replace the ground
truth in training. Bengio et al. (2015) pro-
pose Scheduled Sampling (SS), which dynamically
takes samples from the model’s predictions and
replaces the ground truth used for the decoder.
Zhang et al. (2019) further extend the sample space
with beam search and choose the candidate trans-
lation with a sentence-level metric such as BLEU.
Mihaylova and Martins (2019) implement SS to
Transformer (Vaswani et al., 2017) using two-pass
decoding. The first pass gets the predictions from
the model, which are used as input to the sec-
ond decoder according to the scheduler. Liu et
al. (2021) propose Confidence-Aware Scheduled
Sampling (CASS) which also uses the two-pass de-
coding. They improve the performance by choos-
ing the inputs to the second decoder based on the
log probability of the ground truth token. Model
predictions are only used when the model is confi-
dent and has a high probability (above 0.9 in their
paper). Goodman et al. (2020) propose TeaForN
to mitigate exposure bias. They use a stack of de-
coders to allow the model to update based on N
prediction steps. Each decoder’s output is used to
calculate the loss component at this decoder and
is also used as the input of the next decoder. The
overall loss is the weighted sum of losses from all
decoders.

There are some doubts about SS. Huszar (2015)
proves that SS has an improper training objective.
Experiments in Mihaylova and Martins (2019)
show that SS performs worse than teacher forcing
for De—En. Korakakis and Vlachos (2022) use the
ground truth tokens as prefixes for the decoding on
a model trained with SS and find that its perfor-
mance is bad compared to the MLE model. They
conclude that finetuning with SS results in catas-
trophic forgetting (French, 1999). To avoid forget-
ting, they use Elastic Weight Consolidation (EWC)
to regularize conditioning with model-generated
prefixes. This method is similar to TFN for us-
ing a weight for prediction. But EWC works at the
training parameters level, not at the loss level like
TEN.

The sequence-level approach uses a sequence-
level loss function and directly maximizes the
total quality of the generated sequences. Ran-
zato et al. (2016) propose MIXER, based on



a reinforcement-learning algorithm REINFORCE.
MRT (Shen et al., 2016; Wang and Sennrich, 2020)
aims to minimize the risk by preference to the can-
didate with the largest similarity to other candi-
dates. Edunov et al. (2018) provide a summary
of classic sequence-level loss functions. There is
some debate on the effectiveness of these methods.
Choshen et al. (2019) identify multiple weaknesses
of MIXER and MRT and suspect that they do
not optimize the expected reward, while Kiegeland
and Kreutzer (2021) provide empirical counter-
evidence to these claims.

The sequence-level approach is usually hard
to converge from randomly initialized parameters
and requires a baseline model trained at the token
level as a starting point. In this sense, a token-level
solution can be complementary to the sequence-
level approach.

2.2 Using Contrastive Learning (CL) in NLP

Sun and Li (2021) apply CL to mitigate exposure
bias for text summarization. They use the gold ref-
erences and low-quality predictions as the positive
and negative samples, respectively. The average
log probability of sequences is used for the loss.
Liu et al. (2022) use CL to calibrate the model. The
objective is that higher-quality candidates tend to
have higher log probability and are more likely to
be chosen from the n-best list at the decision phase.
All these methods use CL in sequence-level objec-
tives, while our method works at the token level.
Yang et al. (2019) and Pan et al. (2021) apply CL
to NMT, but they address specific issues, namely
word omission errors and interim presentation for
many-to-many multilingual NMT, respectively. Su
et al. (2022) use CL to calibrate the model’s repre-
sentation space for tokens, mitigating the issue of
anisotropic distribution of token representations.

3 Approach
3.1 Discover the Missing Objective

We analyze the objectives used by the current
token-level methods and discover a missing objec-
tive.

We use X and y; to denote the source sentence
and the ground truth token for step 7. ¥; is a target
token different from y; at step 4.

At step ¢, the MLE training with teacher forc-
ing maximizes p(y;| X, y1,...,yi—1). If the model
is effectively trained, it implies that, for any g;,

p(yi| X, y<i) > p(5:| X, y<i). 9]
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The popular token-level methods addressing ex-
posure bias, such as Scheduled Sampling, usually
aim to enhance recovery capability from errors by
maximizing p(y;| X, y<i—1,7i—1), which implies
that, for the sampled ¢;—1 and any g;,

Pl X, y<i—1,8i-1) > p(%il X, y<i-1,9i-1). ()

Note: when g;_1 is the first error, y.;_1 are all
ground truth tokens. Otherwise, y.;—1 may in-
clude sample tokens.

However, maximizing p(yi| X, y<i—1,Ji—1) has
a side effect.  Although it is good for re-
covery, it may impact the ground truth. If
p(Yil X, y<i-1, Ji—1) exceeds p(y;| X, y<;), the se-
quence (y<;—1,Y;—1,%;) may have a larger proba-
bility than the ground truth (y<;—1,¥;—1,¥y;). This
side effect is observed in our experiments (Subsec-
tion 5.2).

This side effect implies that the model’s predic-
tion may deviate from the ground truth and gener-
ate a sequence with an error. This is particularly
probable when beam search is used for decoding,
where several ;1 tokens have a chance to remain
in the hypothese set and enter the next step during
decoding.

The objective in Inequality (3) is missing in cur-
rent training objectives:

3

With this objective, the recovery is explicitly
constrained in a scope not to impact the ground
truth. We propose to include it in training.

These three inequalities represent three objec-
tives that we want to achieve. We denote them as
ObjrLE, Objrec and Objo ge. for Inequality (1),
(2), and (3), respectively. CRec stands for Con-
straining the Recovery.

Pl X, y<i) > p(yi| X, y<i-1,9i-1).

3.2 Token-Level Contrastive Learning

The key component in the loss function of con-
trastive learning is a max function:

max{0, p + Snegative — Spositive I 4

where Spegative and Spositive are scores for neg-
ative and positive samples, p is a hyperparameter
for the margin. This function implies that when the
score of the negative sample plus a margin is larger
than the score of the positive sample, it outputs a
positive loss. Otherwise, the loss is zero. The ob-
jective is that the score of the negative sample is



constrained to be at least one margin lower than
the score of the positive sample.

We apply contrastive learning at the token level.
The left terms in Inequality (2) and (3) are used
as the scores of positive samples, while their right
terms are the scores of negative samples.

3.3 Coordinate Three Objectives in One Loss
Function

Three objectives in Subsection 3.1 are combined in
our loss function using multi-task learning.

We follow the two-pass decoding in Mihaylova
and Martins (2019) and Liu et al. (2021), as illus-
trated in Figure 1.

Output
Probabilities

Output
Probabilities

Feed Forward|

e
—

Target Input
(Golden)

Feed Forward|

==
=

Target Input
(Golden + Predictions)

Source Input

Figure 1: Scheduled sampling for the transformer with two-
pass decoding (Mihaylova and Martins, 2019; Liu et al.,
2021)

The first decoder is trained with teacher forcing,
and its output is used for the Objrr (Inequal-
ity 1). The Negative Log-Likelihood (NLL) with
Label Smoothing (Edunov et al., 2018) is used:

Lyre = — Z log p(y¢|X, y<i)

i=1

—Drr(f || p(y:| X, y<s)),

where f is uniform prior distribution over all to-
kens in the vocabulary with the size of V, f = %

We use the same strategy and hyperparameters
in Confidence-Aware Scheduled Sampling (Liu et
al., 2021) to decide the inputs to the second de-
coder. Predicted tokens and random tokens are
used as target inputs for high-confidence posi-
tions, and the ground-truth tokens are used for low-
confident positions. The decision rule can be ex-
pressed in Equation (6) below.

®)

yi-r if p(yil X, y<i) < 0.9
Yrand Zf p(y’LlXa y<1) > 0.95
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When the probability of the ground truth token at
step ¢ in the first decoder is no greater than 0.9,
the ground truth token y;_; is chosen as input for
the second decoder to reinforce the teacher forcing.
When the probability is between 0.9 and 0.95, the
token with the maximum probability at step ¢ — 1 is
used to simulate the model prediction in inference.
When the probability is larger than 0.95, a token
randomly sampled from the target sentence is used.
The output from the second decoder is used with
contrastive learning for the Objge. and ObjcRec-
To meet the Objge. from Inequality (2), we use
the function below to formulate the recovery loss:

LRec = max{O, p+log p(4:| X, y<i—1,%i-1)

N @)
—log p(yi| X, y<i-1,%i-1)}-

We use the function below to formulate the loss for
the Objc ree (Inequality 3) to constrain recovery:

Lcree = max{0, p + log p(yi| X, y<i—1, Ji-1) ®

—log p(yil X, y<i)}-

The overall loss function is a weighted sum of
three components:

_ Lyvre + aLRec + 0LCRec

L=
1+ 2«

; &)

where « is a hyperparameter as the weight.

4 [Experiments

4.1 Datasets

Our experiments use the corpora from WMT!.
Wang and Sennrich (2020) claim that the methods
reducing exposure bias with sequence-level objec-
tives such as MRT can particularly enhance the
model’s resilience to domain shift. To evaluate this
claim, we conduct Out-Of-Domain (OOD) tests on
De-En and Ru-En.

For De-En, we use Europarl v7, News-
commentary-v12, and Common Crawl for train-
ing, Newstest2014 for validation, and New-
stest2021 and EMEA? for in-domain and OOD
testing respectively.

For Ru—En and En—Ru, we use ParaCrawl v9,
News-commentary-v10, and Common Crawl for
training, Newstest2014 for validation, and New-
stest2021 for in-domain testing. The OOD tests for

"http://www.statmt.org
nttps://opus.nlpl.eu/EMEA.php



Ru—En use the test set for the Biomedical Transla-
tion Task in WMT223.

These original datasets are filtered to remove
low-quality data. 350 million sentences are ran-
domly selected with the conditions below:

* The length of source and target sentences are
within the range of 5 to 300.

* The disparity between the source and target
sentence length does not exceed five times.

The number of sentence pairs in the final training
sets for each language pair is: De—En 2.6 million,
Ru—En 2.9 million, En—Ru 2.9 million.

4.2 Models

We compare our method to the vanilla Transformer
model and reimplement five methods aiming at
mitigating exposure bias for comparison.

e TX is the vanilla Transformer.

* §S (Mihaylova and Martins, 2019) is a typi-
cal Scheduled Sampling method based on 2-
pass decoding with Transformer. We use In-
verse Sigmod Decay for scheduling since it
performs better than other scheduling algo-
rithms according to Liu et al. (2021).

CASS (Liu et al., 2021) is Confidence-Aware
Scheduled Sampling using the best configu-
ration in their paper, which outperforms TFN,
MIXER, and MRT in their experiments.

TFN (Goodman et al., 2020) uses 2 stacking
decoders and combine their loss functions.
According to their paper’s recommendation,
we use 0.4 as the second decoder’s weight and
shared parameter for both decoders.

e MIXER (Ranzato et al.,, 2016): Our
implementation follows Kiegeland and
Kreutzer (2021).

e MRT (Shen et al., 2016): We use 4 candidates
and do not include the gold reference, same as
Wang and Sennrich (2020).

Our method is denoted as TCL (Token-level Con-
trastive Learning). The margin p for the con-
trastive learning is set to 0.01. This means that the
probability of a negative sample is allowed to reach

*https://www.statmt .org/wmt22/
biomedical-translation-task.html
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99% of the probability of a positive sample maxi-
mally. We conducted preliminary experiments on
the weight « in the loss function. The models with
a = 0.5 got bad performance. Our results in this
paper are from experiments using models trained
with a = 0.1.

Our implementation is based on the Fairseq
toolkit (Ott et al., 2019) with a typical configura-
tion # similar to the original Transformer (Vaswani
et al., 2017). We use the BPE (Sennrich et al.,
2016) mode in SentencePiece® for subwords with
32,000 updates and use a shared vocabulary for
source and target. We use beam search for decod-
ing. The beam size is 4.

Our experiments are based on Transformer Base
(about 60 million parameters). Both the dropout
rate and Lable Smoothing are set to 0.1 for all
models.

The models for vanilla Transformer 7X are
trained for a minimum of 20 epochs, stopping if
the validation loss does not decrease for 20 con-
secutive epochs. The other baseline methods and
TCL use these vanilla Transformer models as pre-
trained models for finetuning. During finetuning,
we adopt the same early stop policy as Choshen et
al. (2019), where the process is terminated if the
validation loss does not decrease for ten consecu-
tive epochs.

The token-level methods (CASS, CASS, TFN,
and TCL) have similar speeds in training. It takes
about 30 minutes to finish one epoch with 10
GPUs. The sequence-level methods (Mixer and
MRT) are much slower since they use online sam-
ples during training. It takes MIXER and MRT
about 10 hours and 14 hours to finish one epoch
with 10 GPUs, respectively. This result is consis-
tent with the experiments in Edunov et al. (2018).
They find that online sampling methods can be 26
times slower than the corresponding offline meth-
ods.

We do significance tests for token-level meth-
ods. We train models with five different seeds
(1-5) and report the mean and standard error over
these independent runs. We use the default seed (1)
in Fairseq for other experiments. We do not have
significance tests for the sequence-level methods
(MIXER and MRT) since they are too slow.

All GPUs that we use are Nvidia GF1080Ti.

“nttps://github.com/facebookresearch/
fairseq/tree/main/examples/scaling_nmt
Shttps://github.com/google/sentencepiece



De-En Ru-En En-Ru
Metrics | BLEU Meteor Comet BLEU Meteor Comet BLEU Meteor Comet
TX 27.57 49.72 75.01 30.15 49.43 74.93 15.87 29.13 63.97
SS 27.78+.08 49.764+.12 75.16+.01 | 30.44+.11 49.64+.13 75.16+.07 | 16.78+.11 30.54+24 65.95+.34
CASS 27.86+.18 49.744.07 75.26+.06 | 30.59+.16 49.85+.10 75.39+.02| 17.104+28 31.08+.05 66.36+.49
TFN 27.62+23 49.63+.19 75.16+.09 | 30.44+.10 49.74+.07 75.33+.09| 17.04+.18 30.87+30 66.62+.09
MIXER | 27.84 49.74 75.33 30.03 49.67 75.36 17.65 31.64 66.77
MRT 27.41 49.52 75.29 30.39 49.69 75.07 17.15 31.29 66.04
TCL 28.10+.16 49.94+.13 75.33+.07 | 30.59+.17 49.81+13 75.50+.18 | 17.35+.16 31.56+.24 66.83+.13
A (-TX) | 0.53 0.22 0.32 0.44 0.38 0.57 1.48 2.43 2.86

Table 1: Performance of different methods for the in-domain tests (Newstest2021). We report mean and standard error over
five independent training runs with seeds 1-5 for the token-level methods. The scores of TCL and those better than TCL are

highlighted in Bold. A is the gain of TCL compared to TX.

De-En Ru-En
Metrics | BLEU Meteor Comet BLEU Meteor Comet
TX 25.75 41.62 67.93 34.94 52.01 7491
SS 26.17+.14 42.09+.07 68.13+.08 35.66+.06 52.51+.17 75.20+.10
CASS 26.32+.12 42.03+.07 68.23+.09 35.54+.15 52.39+.25 75.28+.12
TFN 26.41+.08 42.04+.06 68.32+.07 35.85+.08 52.57+.13 75.23+.09
MIXER | 26.62 42.20 68.50 35.66 52.22 75.18
MRT 26.36 42.05 68.15 35.39 52.55 75.22
TCL 26.62+.20 42.17+.19 68.34+.07 35.82+.11 52.61+.07 75.24+.07
A (-TX) | 0.87 0.55 0.41 0.88 0.60 0.33

Table 2: Performance of different methods for out-of-domain (OOD) tests. Denotations are the same as Table 1.

4.3 Evaluation and Results

We use BLEU, Meteor, and Comet for evaluation.
For BLEU, We use SacreBLEU © (Post, 2018) 7.
For Meteor®, we use version 1.5. For Comet®, we
use the wmit22-comet-da model, which scales the
scores between 0 and 1. Scores for all metrics are
multiplied by 100.

Table 1 and Table 2 illustrate the performance
of methods for in-domain test sets (Newstest2021)
and out-of-domain test sets, respectively.

TCL outperforms the vanilla Transformer in all
tests. TCL gets the best performance among token-
level methods in tests except for three cases, high-
lighted in the tables in Bold. The differences in
scores between TCL and these three exceptions are
very small (less than 0.1).

TCL is ten times more efficient in training com-
pared to those two sequence-level methods. TCL
still outperforms those methods in the majority of
the tests.

*https://github.com/mjpost/sacreBLEU

7 case. mixed+numrefs. 1 +smooth.exp+tok.13a+version.2.3.1
$http://www.cs.cmu.edu/~alavie/METEOR/
‘https://github.com/Unbabel/COMET
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TCL gets larger gains in the OOD tests than in
the in-domain tests. This is consistent with the
conclusion in Wang and Sennrich (2020). They
claim that exposure bias is more influential in
domain shift, although their experiment uses the
method MRT.

Our analysis in Section 5.2 demonstrates that
TCL achieves both recovery and constraining re-
covery and mitigates the exposure bias. The anal-
ysis in Section 5.3 shows the effectiveness of this
method by tracking the values of three components
in the loss function in training.

5 Analysis

Besides the overall performance, we investigate
how these three objectives are met and whether the
loss function effectively coordinates these objec-
tives.

We start by using the prefix switching method.
Then, we directly measure how often the three ob-
jectives in Subsection 3.1 are NOT met during de-
coding for each method. Finally, we verify the ef-
fectiveness of the loss function in Subsection 3.3
by monitoring how the values of these components



De-En Ru-En En-Ru
Prefix Normal Prefix Normal Prefix Normal

TX 41.37 27.57 42.87 30.15 30.25 15.87
SS 41.20 27.75 43.28 30.20 3091 16.86
CASS | 41.16 27.70 43.42 30.35 31.01 17.19
TFN 41.77 27.25 43.47 30.30 30.83 17.29
MIXER | 41.40 27.84 43.43 30.03 30.54 17.65
MRT 40.96 27.41 43.42 30.39 30.83 17.15
TCL 41.65 28.48 43.44 30.39 30.79 17.33

Table 3: The inconsistency between prefix switching test (denoted as Prefix) and normal tests. Best BLEU scores are high-

lighted in Bold.

in our loss function change during training TCL
and its variants.

5.1 Using Prefix Switching to Quantify
Exposure Bias Is Not Reliable

Prefix Switching is often used to quantify expo-
sure bias (Wu et al., 2018; Korakakis and Vlachos,
2022). We use various lengths of ground truth to-
kens as prefixes and measure the average quality
of the part of the sequence from the model’s pre-
diction. The length of the prefix varies from 1 to
N-1, where N is the length of the reference. After
decoding, we measure the average sentence-BLEU
scores of the prediction part of sequences. If the
length of a prediction part is shorter than 4, it is
not considered for the average.

Table 3 shows the results for three language
pairs on the in-domain test sets using the Prefix
Switching and the normal tests. In the normal tests,
there are no ground-truth prefixes during decoding.

The results of these two tests are inconsistent.
For example, TFN gets the best BLEU score in
De—En in Prefix Switching testing. But it gets a
score lower than the vanilla Transformer in the
normal test. It reflects that using prefix switching
to quantify the exposure bias may not be reliable.
This issue requires further investigation.

5.2 Analysis if Three Objectives Are Met or
Not

We directly detect how many times these three ob-
jectives (Objryrre, Objgree and Objogee) in Sub-
section 3.1 are met or not in decoding.

Similar to prefix switching, we use various
lengths of ground truth as prefixes to the decoder.
In this experiment, we only need to monitor one or
two steps of decoding, not requiring the decoder to
finish a prediction with an End-of-Sentence (EOS).
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Assume that N is the length of the gold reference
in subwords and £ is the length of the prefix which
enumerates between 0 and N.

We need a set of non ground-truth tokens, ¢j;_1,
to test Objree and ObjoRec. Yr—1 is correspond-
ing to y;—1 in Inequality (2) and (3). It is in-
tractable to enumerate all tokens in the vocabulary.
We choose the m tokens with the top probabilities
from outputs at the step k-2 and test with each of
them by appending it to the ground truth prefixes
y<k,—1 for decoding at step k-1. The ground truth
token is taken out if it is in this top-m token set.
We use m € {1,5,10} since the size of the beam
search is usually not greater than 10 in practice.

Once g1 is selected, the decoder uses
(X, y<k—-1,Yr—1) and (X,y<p—1,0k—1) as in-
puts respectively and get both p(yx|X, y<x) and
Pkl X, y<k—1,0k-1).  If p(yelX,y<x) is the
maximum in its decoding step, we can tell that
Objarre is met. If p(yr| X, y<r—1,Jr—1) is the
maximum in its step, Objge. is met.

We use the joint probability of bi-gram to test
ObjcRec, the third (missing) objective, since the
total probability of the sequence is used in decod-
ing. Inequality (10) below is the criterion:

Pk, Yk—1|X, Y<h—1) =
(Y| X, y<r) * P(Yr—1] X, y<r-1)
>
DY, Ge—1|X, Y<r—1) =
P(Yk| X y<io—1, Jr—1) * p(Ju—1]X, Y<r—1)

(10)

Table 4, 5, and 6 illustrates results for differ-
ent methods for De—-En, Ru—En and En—Ru respec-
tively. The event of Not Met is counted for each
step for each objective. When the number of non
ground-truth tokens (m) is larger than 1, such an
event may happen more than once at one step. The



ObjmLE Objree ObjcRec
Topl Top5S Top10 Top1l Top5S Top10

TX 0.316 0.277 3.087 6.852 0.125 0.362 0.534
SS 0.314 0.275 3.091 6.855 0.127 0.362 0.530
CASS | 0314 0.275 3.078 6.806 0.127 0.366 0.538
TFN 0.313 0.275 3.117 6.933 0.138 0.388 0.566
TCL 0.314 0.275 3.088 6.868 0.123 0.354 0.521
MIXER | 0.317 0.279 3.101 6.887 0.125 0.363 0.532
MRT 0314 0.274 3.080 6.842 0.127 0.353 0.513

Table 4: Failure rates of three objectives for De—En. Smaller is better. The smallest ones are highlighted in Bold. The values
in this table are how often the objective is NOT met, divided by the total number of tests (24760 in this case). Top-m denotes
that the number of non ground-truth tokens (yx—1) used in test is m. CASS has a larger failure rate for the third objective
Objc Rec than the vanilla Transformer. This result reflects that CASS has enhanced recovery foo much that it deviates from the
ground truth. TCL is the only token-level method with lower failure rates for all objectives than the vanilla Transformer. The
two sequence-level methods are not supposed to have the deviation issue, but they are tested here for reference.

ObjnLE Objrec Objcrec
Topl Top5 Top10 Topl Top5 Top10

TX 0.288 0.254 3.078 6.891 0.104 0.281 0.394
SS 0.285 0.251 3.083 6.891 0.104 0.276 0.388
CASS | 0.286 0.250 3.068 6.838 0.106 0.285 0.400
TFN 0.284 0.249 3.103 6.955 0.115 0.303 0418
TCL 0.285 0.251 3.067 6.865 0.103 0.275 0.387
MIXER | 0.285 0.252 3.078 6.892 0.104 0.275 0.388
MRT 0.285 0.251 3.079 6.874 0.102 0.274 0.380

Table 5: Failure rates of three objectives for Ru-En. Smaller is better. The denotations are the same as Table 4. The total

number of tests is 27828 in this case.

ObjnLE ObjRec ObjcRec
Top1l Top5S Top10 Topl Top5 Top10

TX 0.379 0.356 3.464 7.559 0.149 0.492 0.776
SS 0.375 0.351 3.462 7.560 0.145 0.487 0.774
CASS | 0.373 0.348 3.431 7.492 0.151 0.504 0.794
TFN 0.373 0.353 3.464 7.558 0.159 0.519 0.813
TCL 0.376 0.352 3.451 7.536 0.144 0.486 0.770
MIXER | 0.375 0.352 3.467 7.577 0.140 0.467 0.740
MRT 0.373 0.349 3.448 7.540 0.146 0.479 0.757

Table 6: Failure rates of three objectives for En—Ru. Smaller is better. The denotations are the same as Table 4. The total

number of tests is 42442 in this case.

total number of events is then divided by the num-
ber of steps (for example, 24760 in De—En). The
results are the average failure rate per token.

These tables show that CASS has the lowest
failure rates for the second objective Objge. in
both De-En and En—Ru. CASS also gets rela-
tively low failure rates for this objective in Ru-
En. These results demonstrate that CASS success-
fully enhances the recovery capability. However,
CASS has larger failure rates for the third objective
ObjcRec than the vanilla Transformer in all three

language pairs. This result reveals that CASS has
enhanced recovery foo much that it deviates from
the ground truth, which is the side effect described
in Subsection 3.1.

Our method TCL gets the lowest failure rate for
the third objective Objc re. among the token-level
methods in all tests. Furthermore, TCL is the only
token-level method with lower failure rates for all
objectives than the vanilla Transformer in Ru-En
and En—Ru. It achieves a pareto optimality in the
sense of improvement on both objectives: recovery
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Figure 2: Investigate the values of components in TCL’s loss function for De—En in training. Rec Only denotes the model
trained without applying the loss component Lc rec. CRec Only denotes the model trained without applying the loss component
L rec. MLE Only denotes the model trained without applying both £Lge. and L¢ Rree.-

and constraining recovery. These results demon-
strate that the exposure bias is mitigated by our
method.

The sequence-level methods do not have the de-
viation issue discussed in this paper since they use
sequence-level objectives in training. Their results
are included in these failure rate tests for reference
only. The results show that they perform well in
this test, reflecting their effectiveness in mitigating
exposure bias, although these methods are much
slower than the token-level methods.

5.3 Effectiveness of Loss Components

There are three components in our loss function in
Equation (9): Ly, LRee, and Lo pee. We evalu-
ate the effectiveness of these components by track-
ing their loss values in training TCL and its three
variants by turning off one or two components. We
use a1 and a9 to denote the weights for Lp.. and
L Rec, TESpECtively.

e Normal TCL: oty = a9 = 0.1
* Rec Only (recovery): a; = 0.1,a9 =0

* CRec Only (constraining recovery): o) =
0, Qg = 0.1
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* MLE Only: a1 = a2 =0

Figure 2 illustrates how each loss component’s
values vary in training for De-En. These values
are reported every 100 updates during training and
smoothed by taking the average with their ten right
and left neighbors.

Figure 2a shows that the values of Ly for
four models are almost the same. This component
is not influenced by other two components.

Figure 2b shows the recovery loss Lge.. Even
for the model MLE Only without Lg.. and L¢ Rgec,
this loss decreases in training. This implies that
models increase self-recovery capability during
training even if no extra means are used to enhance
it. This result supports the conclusion from He et
al. (2021), although enhancing the recovery capa-
bility may not be enough to deny exposure bias’s
negative impact. The blue and red lines (Rec Only
and Normal TCL) with the recovery component get
smaller values than the other two models without
this component. This illustrates that this compo-
nent in the loss function effectively increases the
capability of recovery.

Figure 2c shows the values of L ge. (constrain-
ing recovery). Similar to the values of £ .. in Fig-
ure 2b, even for the model MLE Only without £ g,



and Lo e, this loss decreases in training. The
green and red lines (CRec Only and Normal TCL)
with the component Lo .. get smaller values than
the other two models without this component. This
implies that using this component in the loss func-
tion effectively reduces the Lo pec.

This loss surprisingly increases after a pe-
riod of decreasing in training for MLE Only and
CRec Only. This is the consequence of increas-
ing the capability of self-recovery shown in Fig-
ure 2b with or without Lp... The increasing
of p(yi| X, y<i—1, Yi—1) may result in the increase
of values of Lo e according to its definition in
Equation (8). Current token-level methods that
maximizes p(y;| X, y<i—1,7i—1) may make this
contradiction more severe.

Figure 2d shows the total loss.

Table 7 shows the ablation tests using the BLEU
scores for Rec Only (recovery) and CRec Only
(constraining recovery) models compared to the
vanilla Transformer and the normal TCL models.
Rec Only gets worse performance than the vanilla
Transformer. CRec Only have some gains. The
normal TCL that combines these components gets
extra improvement. Table 8 in Appendix A illus-
trates the results for En—Ru, and they lead to the
same conclusion.

De-En
Metrics BLEU Meteor Comet

Vanilla Transformer (TX) | 27.57 49.72 75.01
Rec Only 27.23 4929 7527

A (-TX) -0.34 043 0.26
CRec Only 27.82 49.85 7540

A (-TX) 0.25 0.13  0.39
TCL 28.48 50.20 75.55

A (-TX) 0.91 048 0.54

Table 7: Ablation tests. Rec Only (recovery) and CRec
Only (constraining recovery) models compared to the vanilla
Transformer and normal TCL models.

6 Conclusion

Current token-level methods addressing exposure
bias may have a side effect: A sequence with er-
rors may have a larger probability than the ground
truth. Consequently, the generated sequence may
deviate from the ground truth. Our experiments
verify this side effect. We discover a missing ob-
jective behind this side effect that can explicitly
constrain the recovery in a scope that does not im-
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pact the ground truth. We propose token-level con-
trastive learning to coordinate three objectives in
the loss function: the original MLE, recovery from
errors, and constraining the recovery in a scope not
to exceed the ground truth. Experimental results
on three language pairs show that our method out-
performs the vanilla Transformer and five meth-
ods aiming at mitigating exposure bias. Empirical
analysis demonstrates that this method achieves a
Pareto optimality compared with the vanilla Trans-
former. It is also verified that each component in
our loss function effectively improves the model in
training.
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A Ablation tests for En—-Ru

Table 8 shows the ablation tests for En—Ru. Both
Rec Only and CRec Only have some gains. The
normal TCL that combines these components gets
extra improvement.

En-Ru
Metrics BLEU Meteor Comet

Vanilla Transformer (TX) | 15.87 29.13 63.97
Rec Only 16.33  29.71 65.05

A (-TX) 0.46 0.58 1.08
CRec Only 16.65 30.86 65.92

A (-TX) 0.78 1.73 195
TCL 1733  31.77 67.02

A (-TX) 1.46 2.64 3.05

Table 8: Ablation tests. Rec Only (recovery) and CRec
Only (constraining recovery) models compared to the vanilla
Transformer and normal TCL models.
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Abstract

This paper explores Minimum Bayes Risk
(MBR) decoding for self-improvement
in machine translation (MT), particularly
for domain adaptation and low-resource
languages. We implement the self-
improvement process by fine-tuning the
model on its MBR-decoded forward trans-
lations. By employing COMET as the
MBR utility metric, we aim to achieve
the reranking of translations that bet-
ter aligns with human preferences. The
paper explores the iterative application
of this approach and the potential need
for language-specific MBR utility met-
rics.  The results demonstrate signifi-
cant enhancements in translation quality
for all examined language pairs, including
successful application to domain-adapted
models and generalisation to low-resource
settings. This highlights the potential of
COMET-guided MBR for efficient MT
self-improvement in various scenarios.

1 Introduction

Machine translation (MT) bridges the gap between
languages, fostering global communication and in-
formation exchange. However, achieving high-
quality translations across diverse languages and
domains remains a significant challenge, espe-
cially for low-resource languages where limited
training data hinders model performance. Even in
well-resourced settings, continuous improvement

© 2024 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

“Equal contribution
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and adaptation to specific domains are ongoing re-
search efforts.

This paper explores the potential of Minimum
Bayes Risk (MBR) decoding (Kumar and Byrne,
2004) as a self-improvement strategy for MT mod-
els. MBR decoding leverages the model’s predic-
tions to select the best translation from a set of
candidates, potentially improving overall transla-
tion quality.

We employ COMET (Rei et al., 2020) as the
utility function in MBR decoding and rerank can-
didate translations generated by an MT model.
This approach creates a synthetic parallel dataset
from monolingual data in the source language, en-
abling further model self-improvement.

This study examines the effectiveness of MBR
decoding for self-improvement in three lan-
guage pairs: English—-German (high-resource),
Czech—Ukrainian (low-resource), and English—
Hausa (low-resource). For English—-German, the
focus is on the biomedical domain, incorpo-
rating additional monolingual data, while for
Czech—Ukrainian, self-improvement is explored
using only the training data translated by the
model and reranked through MBR decoding.
We further investigate the potential of iterative
self-improvement with MBR decoding in both
English-German and Czech—Ukrainian language
pairs. Finally, in the case of English—-Hausa, we
compare the use of COMET, a massively multilin-
gual metric, with a metric specifically tailored to
African languages i.e. AfriCOMET (Wang et al.,
2023).

To determine the optimal configuration for
MBR decoding, we investigate two decoding al-
gorithms and various numbers of translation can-
didates.

Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1), pages 80-99
June 24-27, 2024 ©2024 European Association for Machine Translation



2 Related Work

MBR and QE reranking with neural metrics
MBR decoding, a technique commonly used in
Statistical Machine Translation (SMT), has gained
traction in Neural Machine Translation (NMT) in
recent years. Freitag et al. (2022) proposed using
reference-based metrics, such as BLEURT (Sel-
lam et al., 2020a) and Quality Estimation (QE)
models, such as COMET-QE (Rei et al., 2021) for
reranking the set of hypotheses produced by the
NMT model.

Similar work by Fernandes et al. (2022) pro-
posed quality-aware decoding. They explored
various reranking strategies, including the well-
performing pre-ranking of the set of hypotheses
with QE models before passing them into MBR de-
coding. They found that using MERT-tuned (Och,
2003) reranker, where multiple QE metrics and
model log-likelihood scores are linearly combined
with learned weights to maximize a reference-
based metric on a validation set shows improve-
ments over the baseline.

Amrhein and Sennrich (2022) used MBR decod-
ing to identify biases and weaknesses in COMET,
where they found that the early COMET models
are not sufficiently sensitive to discrepancies in
numbers and named entities.

MBR decoding performance is heavily depen-
dent on the number of samples and the sampling
strategy. Freitag et al. (2023) investigated various
sampling strategies and found that epsilon sam-
pling outperformed others. This sampling method
discards tokens with a probability below a cer-
tain threshold (epsilon), guaranteeing that each to-
ken in the final sample has a fair chance of being
included. The approach is particularly effective
when generating a large set of samples, as it in-
herently yields greater sample diversity compared
to beam search.

Vernikos and Popescu-Belis (2024) introduced
QE-fusion, a method that combines spans from
different candidates sampled from a model using
QE metrics. They found that the method con-
sistently improves translation quality in terms of
neural evaluation metrics, especially if applied to
LLM due to their ability to generate diverse out-
puts.

Due to its ease of implementation and use,
MBR and QE reranking have been success-
fully applied in machine translation shared tasks,
as demonstrated by the results in several stud-
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ies (Nowakowski et al., 2022; Kudo et al., 2023;
Jon et al., 2023). This highlights its potential to
significantly improve translation quality.

Model self-improvement Recent research has
shown a growing interest in leveraging model out-
puts for self-improvement. This approach holds
significant promise in the case of machine trans-
lation, especially for low-resource and domain-
specific translation scenarios, where there is access
to the source-language data, but the corresponding
target-language data is severely limited.

Gulcehre et al. (2023) describes reinforcement
self-training (ReST) method for language mod-
eling. The method is based on producing a
dataset for fine-tuning by sampling from the model
(LLM). The samples are then scored with a QE
metric. Then, offline reinforcement learning al-
gorithms are applied using a reward-weighted loss
based on the QE scores. The method can be ap-
plied to all generative learning settings, but the au-
thors focus on its application to machine transla-
tion, showing that the method increases translation
quality.

Concurrent work by Finkelstein et al. (2023) de-
scribes self-tuning NMT models on a set of hy-
potheses reranked using either MBR, QE, or a
combination of the two methods. They also ex-
perimented with using LLM as the teacher model,
finding that it outperforms using a self-teacher and
fine-tuning on references.

Our research expands on recent developments in
the field by investigating the use of MBR-based
fine-tuning in three key areas. Firstly, we exam-
ine its applicability in domain-specific translation
tasks, specifically focusing on English—-German
translation in the biomedical domain. Secondly,
we investigate its effectiveness for low-resource
translation directions, exemplified by the Czech—
Ukrainian language pair. This broadens the scope
beyond English-centric language pairs, thus con-
tributing to a more comprehensive analysis of
MBR performance across less-represented lan-
guages in neural evaluation metrics. Finally, we
explore the use of neural QE metrics tailored for
specific languages, using AfriCOMET (Wang et
al., 2023) as an example.



3 Experiment Overview

3.1 Model Self-Improvement

The self-improvement process leverages MBR de-
coding to guide the model to select high-quality
translations according to the utility function. The
process consists of 3 steps:

Step 1: Sample Generation Using beam search
decoding with beam size equal to N, gener-
ate N translation candidates using the base
model for each source sentence. While Fre-
itag et al. (2023) suggested that epsilon sam-
pling might yield better results with MBR de-
coding, it typically requires reranking a sig-
nificantly larger number of translation can-
didates, which becomes computationally ex-
pensive for processing large datasets. Beam
search, on the other hand, allows for gener-
ating a smaller set of high-quality candidates
while providing sufficient data for effective
MBR decoding.

Step 2: MBR Decoding Select a single transla-
tion for each source sentence from the list of
candidates through MBR decoding utilizing
COMET to guide the selection towards high-
quality translations. For an efficient imple-
mentation of the MBR decoding algorithm,
we use the code! from the Marian (Junczys-
Dowmunt et al., 2018) framework.

Step 3: Model Fine-tuning Fine-tune the base
model on the synthetically created dataset.
Use COMET as an early stopping metric dur-
ing training to ensure fitting to this metric.

3.2 English-German

The English—-German experiment simulates a real-
world domain adaptation scenario. In such set-
tings, while a large general-purpose parallel corpus
might be available, the specific domain often lacks
extensive parallel data. To address this challenge,
we leveraged both a smaller parallel dataset and a
larger monolingual dataset in the source language
containing biomedical terminology.

To leverage the monolingual data in the source
language we propose a two-step approach:

1. Fine-Tuning: We fine-tune a general-purpose
English-German model on a small parallel
biomedical dataset.

'nttps://github.com/marian-nmt/
marian-dev/tree/master/scripts/mbr
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2. Self-improvement: To enhance the model
performance in the biomedical domain, we
incorporate a larger monolingual biomedi-
cal dataset during the self-improvement pro-
cess. This involves creating a synthetic par-
allel dataset via MBR decoding and subse-
quently fine-tuning the biomedical translation
model on the generated data.

To assess the robustness of the self-
improvement method, we conducted an additional
experiment in which we applied this method to
a model that was fine-tuned to the biomedical
domain using general domain data for MBR
decoding. This evaluated whether the model
would retain its translation capabilities in the
biomedical domain despite improvements based
solely on out-of-domain data.

3.3 Czech-Ukrainian

The Czech—Ukrainian experiment addresses the
challenge of machine translation between two low-
resource languages. We aimed to evaluate whether
self-improvement through MBR decoding leads to
an increase in the overall translation quality when
applied to language pairs that do not involve En-
glish, which typically dominate machine transla-
tion research.

In this setting, we used only the parallel data
set without incorporating any additional monolin-
gual data. To employ MBR decoding in this data-
scarce environment, we directly translated the en-
tire source side of the parallel dataset using the
baseline translation model. This created a set of
synthetic candidate translations, which were then
reranked through MBR decoding.

In contrast to our English-German experiments
where we incorporated external monolingual data,
this setup explored self-improvement without re-
lying on additional datasets. We achieved this by
solely leveraging the information present within
the data of the base model. This demonstrates the
potential for self-improvement even in resource-
constrained scenarios.

3.4 English-Hausa

The English—-Hausa experiment delves into the
critical question of how the choice of a quality
evaluation metric influences the effectiveness of
self-improvement with MBR decoding. We ex-
plored the impact of language coverage in the eval-
uation metric by comparing two approaches:



* MBR decoding with WMT22 COMET: uti-
lizing the wmt22-comet-da model, which has
been trained on direct assessments between a
diverse set of language pairs.

* MBR decoding with AfriCOMET: using
AfriCOMET-STL, a novel COMET-like met-
ric specifically designed for evaluating trans-
lations to and from multiple African lan-
guages, including Hausa.

The objective of this study was to investigate
the effect of language contribution in the neural
evaluation metric on the quality of translations de-
coded using MBR. The comparison of these two
approaches specifically addresses whether self-
improvement guided by the WMT22 COMET
metric, which is trained on a diverse range of
language pairs, can effectively generalize to low-
resource language pairs. Furthermore, we explore
the potential need to use language-specific metrics,
such as AfriCOMET-STL for Hausa, to achieve
better performance in such scenarios.

3.5 Iterative MBR Self-Improvement

Following the initial self-improvement through
MBR decoding, we explored the possibility of ap-
plying it iteratively to further enhance the model’s
translation quality.

We started each iteration by selecting the best
model checkpoint based on the WMT22 COMET
metric on the validation set. Next, we performed
MBR decoding on the entire training set using this
checkpoint, generating a new iteration of the syn-
thetic training set. Finally, we resumed the train-
ing of the model using the new training set, starting
from the previously selected checkpoint.

The iterative process was repeated until a de-
crease was observed in the evaluation scores of
metrics other than WMT22 COMET. In the case of
English—-German biomedical translation, the pro-
cess was continued until the model’s quality im-
proved solely on an in-domain test set and de-
creased on a general domain test set, as this could
indicate potential overfitting to the biomedical do-
main.

4 Experimental Setup

4.1 Data Filtering

We filtered the general training data using the fol-
lowing heuristic filters:

&3

average length of words in each sentence
(character-wise) < 15;

number of characters in each sentence < 500;
digits in a sentence (character-wise) < 15%);

number of characters in the longest word <
28;

number of words in sentence < 100;

Levenshtein distance between source and tar-
get sentences > 2;

number of characters in each sentence > 5;

probability that each sentence is in the correct
language > 10%.

To ensure that each sentence is in the correct
language, we have used the fastText LID-201 lan-
guage identification model (Burchell et al., 2023).

The Bicleaner-Al model (Zaragoza-Bernabeu et
al., 2022) is also used to filter the English—German
dataset. This tool estimates the likelihood that a
sentence pair constitutes a mutual translation. A
threshold of 50% is established for the Bicleaner
score within this language pair. Bicleaner-Al is not
utilized for other language pairs due to the unavail-
ability of open-source models for those languages.

4.2 Vocabulary

We employed SentencePiece (Kudo and Richard-
son, 2018), a subword tokenization library, to train
unigram tokenizers for each language pair in our
experiments.

For the English—German and English—-Hausa se-
tups, we created a joint vocabulary containing
32,000 subword tokens and tied all embeddings
during the training of the MT model. In con-
trast, for Czech—Ukrainian, due to different scripts
(Latin and Ciyrillic), we created separate vocabu-
laries of 32,000 subword tokens and tied only the
target and output layer embeddings.

4.3 Baseline Model Hyperparameters

For all experiments, we trained Transformer
(big) (Vaswani et al., 2017) models using the Mar-
ian framework. These models were trained on four
NVIDIA A100 GPUs, each equipped with 80GB
of VRAM.

Hyperparameter Settings:

* learning rate: 2e-4;



learning rate warmup: 8000 updates;
learning rate decay: inverse square root;

mini-batch size determined automatically to
fit GPU memory;

early stopping after 10 consecutive valida-
tions with no improvement in mean word
Cross-entropy score.

4.4 Evaluation metrics

We use sacreBLEU (Post, 2018) to calculate
BLEU? (Papineni et al., 2002) and chrF3 (Popovic,
2015).

We acknowledge the potential for overfitting to
the WMT22 COMET* metric used for MBR de-
coding. Therefore, we extended the evaluation
to also include CometKiwi® (Rei et al., 2022),
UniTE® (Wan et al., 2022), UniTE-DA” (Rei et al.,
2023) and BLEURT-20® (Sellam et al., 2020b).

For the English—-Hausa experiments, we addi-
tionally calculated scores using AfriCOMET-STL
(Wang et al., 2023), which was specifically trained
to evaluate translations involving certain African
languages.

4.5 English to German

To train the baseline model, we used all corpora
from the MTData toolkit (version 0.4.0) (Gowda
et al., 2021), excluding the validation sets and the
test sets from the available datasets. Our filters de-
scribed in Section 4.1 reduced the dataset from ap-
proximately 800 million sentences to 400 million.

In the context of domain adaptation, we em-
ployed the following list of domain data:

1. 40 thousand sentences from biomedical-
translation-corpora (Neves et al., 2016);

2. 3 million sentences from Ufal medical corpus
shared in WMT23 (Kocmi et al., 2023);

2BLEU signature: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
3 cheF signature: nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1
*https://huggingface.co/Unbabel/
wmt22—-comet—-da
Shttps://huggingface.co/Unbabel/
wmt22-cometkiwi-da
*https://huggingface.co/Unbabel/unite-mup
"nttps://huggingface.co/Unbabel/
wmt22-unite—-da
$https://storage.googleapis.com/
bleurt-oss—-21/BLEURT-20.zip
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3. 2 million sentences from EMEA corpus
downloaded from OPUS (Tiedemann and Ny-
gaard, 2004).

After deduplication, we were left with 3 mil-
lion sentences which we split into two datasets.
We considered a scenario with 1 million bilin-
gual parallel sentences and approximately 2 mil-
lion monolingual sentences in the source language.
Khresmoi-dev (Dusek et al., 2017) concatenated
with FLORES-200 (NLLB Team et al., 2022) was
utilized as the validation set during training. We
did not apply any filtering to the domain data.

We used the above data to train the following
models:

* Baseline (Baseline) — model trained only on
data from the MTdata toolkit.

Baseline + mix-tuning (Mix-tune) — fine-
tuned Baseline model on 1 million in-domain
bilingual data concatenated with 1 million
general-domain data randomly sampled from
the Baseline training set.

Baseline + domain MBR (Base-domain-
mbr) — fine-tuned Baseline model on 2 mil-
lion domain-specific sentences from MBR-
decoded forward translations.

Mix-tuned + domain MBR (Mix-tune-
domain-mbr) — fine-tuned Mix-tune model
on 2 million domain-specific sentences from
MBR-decoded forward translations.

Mix-tuned + MBR-iteration2 (Mix-tune-
domain-mbr-iter2) — fine-tuned Mix-tune-
domain-mbr on the 2 million domain-
specific sentences from MBR-decoded for-
ward translations.

Mix tuned + general-MBR (Mix-tune-
general-mbr) — fine-tuned Mix-tune model
on 2 million sentences sampled from the
general-domain corpora from the Baseline
training set as MBR-decoded forward trans-
lations.

When fine-tuning the Mix-tune model, we tailor
the learning rate setup to meet specific require-
ments: learn-rate: le-7, Ir-decay-inv-sqrt: 16000,
Ir-warmup: 16000. All remaining fine-tuning pro-
cedures employ an adjusted learning rate set to
Se-6.



4.6 Czech to Ukrainian

We leveraged all of the Czech—Ukrainian parallel
data from the WMT23 MTData recipe, resulting
in approximately 8 million sentence pairs after fil-
tering as described in Section 4.1. We did not in-
clude any additional monolingual data in this ex-
periment.

We utilized the FLORES-200 dataset for vali-
dation during training, while the WMT?22 test set
served as an additional benchmark.

We trained the baseline model only on the par-
allel data, using hyperparameters as described in
Section 4.3. Next, we translated the source side of
the parallel corpus used in training with our base-
line model, saving a list of translation candidates.
We performed MBR decoding, selecting the best
translation of each set of candidate translations, re-
sulting in a synthetic training dataset.

We investigated the following approaches to
leverage the MBR-decoded data for model im-
provement:

* Standard fine-tuning (MBR-finetuned) — we
fine-tuned the baseline model on the MBR-
decoded data, using a learning rate of Se-6.

Fine-tuning with a high learning rate (MBR-
ft-high-Ir) — we fine-tune the baseline model
on MBR-decoded data, using a learning rate
of 2e-4.

Resuming training with MBR-decoded data
(MBR-resumed) — we switched the training
set to the MBR-decoded version and resumed
training, restoring the optimizer state and ef-
fectively continuing its training with the im-
proved data.

4.7 English to Hausa

To train the models in the English—-Hausa direc-
tion, we used data from the WMT shared tasks
from previous years. Specifically, we used:

1. 7 million sentences from OPUS;

2. 2.4 million data from the WMT23 African
MT Shared Task (Kocmi et al., 2023);

3. 150 thousand sentences from ParaCrawl
v8.0 (Banon et al., 2020).

The deduplication process reduced the data size
to approximately 9 million sentences. Following
the filtering criteria detailed in Section 4.1, a total
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of 3.1 million sentences were retained. We used
FLORES-200 for validation during training. After
training, we evaluated the model on the FLORES-
200 and NTREX test sets.

We took similar steps as in the Czech—Ukrainian
experiment, training a baseline model with hyper-
parameters set as described in Section 4.3. We
conducted experiments employing MBR decod-
ing, comparing its performance using two distinct
metrics as the utility function:

e WMT22 COMET based on XLM-
RoBERTa (Conneau et al., 2020), covering a
diverse set of 100 languages,

* AfriCOMET-STL - based on AfroXLM-
RoBERTa (Alabi et al., 2022), covering 17
African languages and 3 high-resource lan-
guages.

We investigated the impact of the chosen metric
for MBR decoding by training two models using
the refined translations:

* MBR-COMET - training resumed with the
training set switched to the WMT22 COMET
MBR-decoded version.

* MBR-AfriCOMET - training resumed with
the training set switched to the AfriCOMET-
STL MBR-decoded version.

5 Results

The statistical significance of the evaluation re-
sults is assessed using a paired bootstrap resam-
pling test (Koehn, 2004), involving 1000 resam-
pling trials to confirm the statistical significance of
the model improvements (p < 0.05).

5.1 Number of translation samples and
search algorithm

To determine the optimal setup for MBR decoding,
we conducted experiments involving the transla-
tion and evaluation of chosen test sets with various
MBR decoding sample sizes and two decoding al-
gorithms. This approach offers the advantages of
being both representative and computationally ef-
ficient compared to training MT models on the en-
tire MBR-decoded training set.

We evaluated two decoding algorithms — beam
search and top-k. For the top-k setup, we experi-
mented with temperature values of 0.1 and 1, keep-
ing the k parameter equal to 10. These choices



were based on the work done by Freitag et al.
(2023). To determine the best number of samples
for MBR decoding we conducted experiments with
the following numbers of samples: 10, 25, 50, 100,
200, 300, 400, 500.

Firstly we noted that beam search is the pre-
ferred option, given its high scores and greater sta-
bility across different metric results, as observed in
Figure 1 and 2. We provide more specific results
in the Appendix Figures 4, 5.
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Figure 1: Comparison of beam search and top-k algorithms
of the Mix-tune English-German model for the khresmoi
test set. Top-k algorithm with temperature 1.0 showed su-
perior performance on neural metrics over top-k with temper-
ature 0.1 and slightly better performance than beam search.
However, beam search achieved the highest score on the chrF
metric, while the top-k algorithm with temperature 1.0 had
the lowest score (translation without MBR decoding is rep-
resented on the chart as the number of translation candidates
equal to 0).

Secondly, we decided to train our models on
MBR-decoded data from 50 candidates selected by
the beam search decoding algorithm. We consid-
ered the balance between improvement in evalua-
tion metrics based on neural language models, sta-
bility across lexical metrics, and the execution time
of MBR decoding, as shown in Figure 3.
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Figure 2: Comparison of beam search and top-k algorithms
of the baseline Czech—Ukrainian model for the FLORES-200
test set. Beam search seems to be the superior option with the
best performance on chrF and BLEURT metrics and slightly
worse results on COMET over top-k with temperature 1.0
(translation without MBR decoding is represented on the
chart as the number of translation candidates equal to 0).

We provide more detailed results in the Ap-
pendix Figures 6, 7, 8,9, 10, 11, 12.

5.2 English to German

Table 1 shows the evaluation results on the in-
domain test set khresmoi. All models self-
improved with MBR decoding have shown en-
hanced performance. @ However, model Mix-
tune-domain-mbr-iter2 did not exhibit improve-
ment over its first iteration Mix-tune-domain-
mbr, even on COMET, which was the utility met-
ric of MBR decoding. Mix-tune-general-mbr
model shows a slightly better performance on
BLEURT metric compared to models fine-tuned
on in-domain MBR-decoded forward translations.

Table 2 presents the evaluation results on the
FLORES-200 test set. Although chrF did not in-
crease, the neural evaluation metrics showed im-
provement. Similar to the khresmoi test set, the
Mix-tune-domain-mbr-iter2 model showed a de-
crease in quality during the second iteration of self-
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Figure 3: Comparison of beam search performance with a different number of samples of the Mix-tune English—-German
model for the khresmoi test set. Initial in